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Nonadiabatic dynamics across a first-order quantum phase transition: Quantized bubble nucleation
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Metastability is a quintessential feature of first-order quantum phase transitions, which is lost either by
dynamical instability or by nucleating bubbles of a true vacuum through quantum tunneling. By considering a
drive across the first-order quantum phase transition in the quantum Ising chain in the presence of both transverse
and longitudinal fields, we reveal multiple regions in the parameter space where the initial metastable state
loses its metastability in successive stages. The mechanism responsible is found to be semidegenerate resonant
tunnelings to states with specific bubble sizes. We show that such dynamics of quantized bubble nucleations
can be understood in terms of Landau-Zener transitions, which provide quantitative predictions of nucleation
probabilities for different bubble sizes.
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Introduction. Nonequilibrium aspects of many-body quan-
tum systems are at the heart of understanding the fundamen-
tals of statistical and condensed matter physics as well as
of quantum field theory [1–9]. On the theoretical front, the
analysis of the dynamics of nonintegrable systems has soared
drastically during the last two decades due to the advance-
ment and development of efficient numerical tools such as
various tensor network methods [10–12]. Moreover, with the
recent breakthroughs in quantum simulations [13–19], study-
ing the nonequilibrium features of complex quantum systems
on table-top experiments has become a reality, especially in
substrates such as cold atoms on optical lattices [20–25] or
trapped ions [26–33].

One promising avenue of work in this ubiquitous facet
of fundamental physics has been to investigate nonadiabatic
excitations due to quenches across a continuous quantum
phase transition [34,35] under the unifying framework of the
quantum version [6,36–40] of the classic Kibble-Zurek (KZ)
mechanism [41–46]. However, the question that has been
asked less frequently is regarding the consequence of a slow
drive across a first-order quantum phase transition (FOQPT)
[47,48] and whether it is possible to find any similar universal
dynamical features akin to quantum KZ theory.

FOQPTs exhibit metastability on a drive across the tran-
sition, i.e., the system tends to persist in the local minimum
due to the presence of a potential barrier. In the traditional
language of continuous field theory, the state gets stuck in
a false vacuum, that is stable against small fluctuations, and
cannot tunnel to the true vacuum easily. However, on a dy-
namical quench across FOQPT, the false vacuum may become
dynamically unstable and the true vacuum may develop due
to the disappearance of the potential barrier far beyond the
FOQPT point. Under such scenarios, several recent studies
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reported KZ scaling laws for the dynamics across certain first-
order phase transitions—both classical as well as quantum
[49–57]. Another more generic mechanism, through which
such metastability can evaporate, is the continual creation of
bubbles of the true vacuum driven by the quantum fluctuations
inside the false vacuum. The aim of the present Letter is
to thoroughly investigate the breakdown of metastability by
the nucleation of bubbles in a many-body quantum setting—
going beyond the paradigm of dynamical instability and the
corresponding KZ mechanism.

We consider the generic one-dimensional (1D) quantum
Ising chain in the presence of both transverse and longitu-
dinal fields. The model possesses a FOQPT between two
ferromagnetic phases of opposite orientations driven by the
longitudinal field. On slow tuning of the longitudinal field
across the FOQPT line, we detect a multitude of special
(resonant) points/regions where the nucleation of bubbles of
the true vacuum inside the metastable false vacuum becomes
energetically favorable. Moreover, these tunneling processes
are quantized in the sense that only a specific size of bubbles,
pertaining to a specific perturbative order, can nucleate around
the corresponding resonant value of the longitudinal field. We
provide accurate quantitative explanations of these nonadia-
batic changes by means of the archetypal Landau-Zener (LZ)
theory [58–61].

Model. The quantum Ising model in the presence of a
transverse field in 1D is one of the prototypical models used
for several decades to understand the quantum phase transition
at zero temperature [34,35]. In the presence of an additional
longitudinal field the Hamiltonian reads

H = −
N∑

n=1

[
σ z

nσ z
n+1 + hxσ

x
n + hzσ

z
n

]
, (1)

where we assume a transverse field hx > 0 for definiteness.
Apart from having a rich phase diagram, this model, although
being simple, has become a test bed for fascinating equi-
librium as well as out-of-equilibrium phenomena, such as
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FIG. 1. The average magnetization mz(t ) (left) and the density of
kinks �(t ) (right) tracked dynamically by varying the parallel field
hz according to Eq. (2) for a wide range of quench times τQ. Here,
we set hx = 0.2 and hin

z = −4.0.

weak thermalization [62], dynamical confinement [63–66],
the existence of quantum many-body scars [67–69], or fracton
dynamics [70]. For the longitudinal field hz = 0, this model
has a continuous quantum phase transition at hx = 1 separat-
ing the ferromagnetic phase (hx < 1) from the paramagnetic
one (hx > 1). An FOQPT exists separating two ordered fer-
romagnetic phases along the so-called Ising line (hz = 0).
In this Letter, we will mostly stay in the regime of a small
transverse field, hx � 1, where, with the exception of some
special regions, it can be considered as a source of small
quantum fluctuations in a classical Ising chain.

Linear ramp and special regions. To initiate, we prepare
the system in the ground state of the Hamiltonian (1) in one
of the ordered phases (hx < 1) and perform a slow ramp of
the longitudinal field hz across the first-order transition. We
choose a protocol akin to what is usually used in studies of
the KZ mechanism, where we ramp the field as

hz(t ) = hin
z + t

τQ
. (2)

We start at time t = 0 when the initial state |ψ (t = 0)〉 =
|ψin〉 is the ground state of the Hamiltonian (1) with hin

z < 0,
and then ramp the field up to a final value hfin

z > 0 in the
opposite ordered phase. The total ramp time is proportional
to τQ. The dynamics is simulated by using the time-dependent
variational principle (TDVP) [12,71–73] based on a matrix-
product state (MPS) [10,11] ansatz with an open boundary
condition.

To start, we use the average longitudinal magnetization
mz = 1

N

∑
n 〈σ z

n 〉, and the longitudinal density of kinks � =
1
2 [1 − 1

N−1

∑
n 〈σ z

nσ z
n+1〉] as our bona fide observables. Deep

in the ferromagnetic phase, for |hin
z | � hx, the initial state has

mz ≈ −1 and � ≈ 0 as the state is highly polarized:

|ψin〉 ≈ |↓↓ · · · ↓〉. (3)

During the ramp, we observe that the initial state remains
metastable against small quantum fluctuations driven by the
transverse hx for a long time after crossing the FOQPT point.
The crucial feature in this scenario is that the system departs
from the metastable state at several special occasions during
the ramp (see Fig. 1). Deep into the positive ferromagnetic
phase (hz > 0), the average magnetization m(t ) and the den-
sity of kinks �(t ) get jolted up in several steps and finally
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FIG. 2. Diagram showing the possible nucleation processes and
their perturbative orders in hx . At hz = 2/n the metastable initial
state, with all spins pointing down, is semidegenerate with states
containing size-n bubbles with spins up. They are connected by an
nth-order process in hx .

saturate although with visible small oscillations. We shall
show that these special regions exist around points where the
initial metastable state is semidegenerate with bubbles of the
true vacuum. Below, we provide a heuristic explanation first.

Without quantum fluctuations, when the knob is set to
hx = 0, any spin flips in the fully polarized initial state (3)
increases the ferromagnetic energy—a domain or bubble of
n consecutive ↑ spins increases the ferromagnetic energy by
4, regardless of its size. Overall, taking into account the local
longitudinal fields, such a bubble of size n changes the total
energy by 4 − 2nhz, which becomes zero when

hz = 2/n. (4)

As a result, we have quantized values of the longitudinal
field hz = 2, 1, 2/3, 1/2, . . ., where the initial metastable state
becomes degenerate with states having bubbles of sizes n =
1, 2, 3, 4, . . ., respectively. These are the four major quantized
values of the longitudinal magnetic field that correspond to the
jolts clearly seen in Fig. 1.

When hx > 0, operators σ z
n are no longer good quan-

tum numbers. For a generic hz, the initial state (3), dressed
with quantum fluctuations of second order in hx, remains
an approximate eigenstate. This is not the case at the
special quantized values of hz, where the initial state be-
comes semidegenerate with bubbles of size n—connected by
anticrossings—and even a tiny hx is enough to mix them. Each
of these resonant points in hz corresponds to a particular order
in perturbation theory with respect to hx. For instance, only
nucleations of bubble size 1 can happen near hz = 2. As this
requires a single spin to be flipped, the tunneling between the
degenerate states is first order in hx. In general, tunneling at
hz = 2/n between the polarized initial state and a state with an
n-bubble is an nth-order process. For a schematic viewpoint,
see Fig. 2.

Landau-Zener (LZ) nucleation theory. We begin with n = 1
near hz = 2. For a low density of flipped spins, we can con-
sider flipping an isolated spin at site j:

|↓ · · · ↓↓ j↓ · · · ↓〉 hx←→ |↓ · · · ↓↑ j↓ · · · ↓〉. (5)
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The tunneling is driven by the term −hxσ
x
j . In the two-

dimensional subspace, the Hamiltonian reads

H (1)
eff = E0(hz ) +

[
0 −hx

−hx 4 − 2hz

]
, (6)

where E0(hz ) = −(N − 1) + Nhz is the energy of the
metastable state. With the linear ramp (2) this becomes the
LZ problem [58–61] with an anticrossing when hz = 2. The
LZ probability to flip the spin is p1 = 1 − exp(−πτQh2

x ). Be-
yond the two-dimensional subspace, this formula is accurate
only when p1 � 1 or, equivalently, for fast quenches with
πτQh2

x � 1. Otherwise, the density of flipped spins becomes
large and we cannot consider flipping spin j in isolation from
flipping other spins.

More generally, bubbles of n spins are nucleated near
hz = 2/n. For a low total density of bubbles we can consider
flipping n consecutive spins j, . . . , j + n − 1 by an nth-order
process:

|↓ · · · ↓↓ j · · · ↓ j+n−1↓ · · · ↓〉
hn

x←→ |↓ · · · ↓↑ j · · · ↑ j+n−1↓ · · · ↓〉. (7)

For such a process the effective Hamiltonian reads

H (n)
eff ≈ E0(hz ) +

[
0 −cnhn

x
−cnhn

x 4 − 2nhz

]
. (8)

Here, cn is a combinatorial factor. In general, it can be derived
for any order n by treating the transverse field perturbatively
and obtaining the low-energy effective Hamiltonian through
the Schrieffer-Wolff transformation [74]. For particular per-
turbative orders, we will concentrate on c1 = c2 = 1 and c3 =
81/64 in this Letter [75]. After the anticrossing at hz ≈ 2/n
the LZ probability to nucleate the n-bubble reads [75]

pn = 1 − exp

(
−c2

n

n
πτQh2n

x

)
≈ c2

n

n
πτQh2n

x . (9)

It is accurate for τQh2n
x � 1 only. In order to verify the LZ

formula, we consider the density of n-bubbles:

λn =
〈

P↓
i

[
n∏

j=1

P↑
i+ j

]
P↓

i+n+1

〉
. (10)

Here, P↑,↓
j = (1 ± σ z

j )/2 is a projector onto spin-↑ (↓) at site
j and 〈· · ·〉 refers to averaging over all sites except for the ends
of the chain to avoid the boundary effects. In Fig. 3 we plot λ1

and λ2 obtained with TDVP as a function of τQh2n
x for several

values of hx such that the low-density condition τQh2n
x � 1 is

satisfied. Plots for different hx collapse to a straight line with
a slope consistent with the simple LZ theory.

Nucleation versus hopping. In the second-order perturba-
tion in hx, the n-bubble at sites j, . . . , j + n − 1 can hop to
the right/left by one lattice site. In order to hop to the right,
spin j + n can be flipped upwards, followed by a downward
flip of spin j, or the other way around. The net hopping rate is
γ = h2

x/hz.

The LZ formula cannot be taken for granted if the nu-
cleated bubble can hop away before the LZ tunneling is
completed at time tLZ ≈ √

τQ/2n [36] after the anticrossing at
hz = 2/n. Therefore, the hopping should be irrelevant when

0.00
01

0.00
02

0.00
03

0.00
04

0.00
05

0.00
06

0.00
07

τQh4
x

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

λ
2

slope = π/2
hx = 0.04
hx = 0.05
hx = 0.06

0.00
02

0.00
04

0.00
06

0.00
08

0.00
10

0.00
12

τQh2
x

0.00020

0.00096

0.00172

0.00248

0.00324

0.00400

λ
1

slope = π
hx = 0.008
hx = 0.01
hx = 0.012

FIG. 3. The density of 1-bubbles, λ1 (left), and 2-bubbles, λ2

(right), are shown as functions of scaled τQ for several strengths
hx of quantum fluctuations. The different hx collapse to straight
lines with slopes π and π/2 for n = 1, 2, respectively. The collapse
demonstrates the accuracy of the simple Landau-Zener theory for a
low density of nucleated bubbles.

γ tLZ � 1 or, equivalently,

1
8 nτQh4

x � 1. (11)

For 1-bubbles this condition is satisfied with a safe margin in
their low-density regime where πτQh2

x � 1. For 2-bubbles it
is identical with low density. However, for 3-bubbles and big-
ger it is stronger than low density. For 3-bubbles the hopping
is a second-order process while the LZ tunneling is formally
a weaker third-order effect.

In order to demonstrate the interplay between the nucle-
ation of 3-bubbles and their hopping we simulate a ramp from
hin

z = −6 to hfin
z = 0.8. The density of 3-bubbles is shown

in Fig. 4 as a function of the scaling variable deep in the
low-density regime, where τQh6

x � 1. With increasing τQh6
x

there is a crossover from the pure LZ nucleation to the regime
where the hopping becomes relevant. In the former we can
see good agreement with the LZ theory, demonstrated by the
collapse, while in the latter the curves begin to diverge slowly.
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FIG. 4. Density of 3-bubbles, λ3, as a function of the scaling
variable τQh6

x for different values of hx . Here, τQh6
x � 1 is deep in

the low-density regime but, according to condition (11), the hopping
remains irrelevant at most up to τQh6

x ≈ h2
x ≈ 0.03. To the left of this

point the plots collapse to a single curve that tends to a line with the
predicted slope 1

3 (81/64)2π = 1.67 (see the inset). To the right the
plots begin to diverge, demonstrating the breakdown of the simple
LZ theory.
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Beyond low density. Up to now, we have seen that bub-
ble nucleations at low densities are accurately described by
two-level LZ problems. Moreover, for n = 1, 2, 3, τQh2n

x is
the scaling variable when the hopping is not relevant. The
next natural questions are (1) if it remains such beyond the
low-density regime, and (2) whether we can also treat bubble
nucleations at high densities as LZ transitions. To answer
these questions, we consider again the nucleation of 1-bubbles
near hz = 2 but this time in a full range of τQh2

x . In order to
isolate the 1-bubble nucleation in full TDVP simulations, we
have to keep irrelevant not only the hopping (11) but also
the 3- and 2-bubble nucleation at hz = 2/3, 1, respectively.
This requires very small h2

x that makes τQ rather long, making
TDVP intractable for τQh2

x � 1.
In order to get perfect isolation and additionally get some

analytical insights, first we consider an effective Hamilto-
nian by projecting the original Hamiltonian (1) into the
1-bubble subspace. On a periodic chain of N sites the
subspace is spanned by the initial metastable state |0〉 =
|ψin〉 in (3), the translationally invariant (TI) one 1-bubble
state, |1〉 = 1√

N

∑
j |↓ · · · ↓↑ j↓ · · · ↓〉, the TI two 1-bubble

state |2〉, up to the TI state with N/2 1-bubbles |N/2〉 =
1√
2
(|↓↑↓↑ · · ·〉 + |↑↓↑↓ · · ·〉). It turns out that the resulting

(N/2 + 1)-dimensional effective Hamiltonian can be con-
structed iteratively (see Ref. [75]), and for our purpose we can
consider up to N = 44 using a standard 64-bit machine.

Similarly as (6), the resulting Hamiltonian is a linear com-
bination of two terms [75],

Heff = Ẽ0 + t

τQ
Hz + hxHx, (12)

with Ẽ0 = 〈0|H (hz = 2, hx = 0)|0〉. This structure allows
us to rewrite the Schrödinger equation i d|ψ〉

dt = Heff |ψ〉 as
i d

dt ′ |ψ ′〉 = ( t ′
τQh2

x
Hz + Hx )|ψ ′〉. Here, t ′ = hxt and Ẽ0 was ab-

sorbed in the phase of |ψ ′〉. This demonstrates that the final
density of 1-bubbles must depend on τQh2

x as a single scaling
variable.

The dependence, obtained by a simulation with the ef-
fective Hamiltonian, is plotted in Fig. 5(a). The same figure
compares results from full TDVP simulations. Unlike the
low-density regime, the generic problem now is that of a
(N/2 + 1)-level LZ transition, which again in the low-density
regime reduces to the local two-level LZ scenario. To describe
such a multilevel LZ problem, we consider two transition
probabilities:

p0→0 = lim
t→∞ |〈0|ψ (t )〉|2,

p0→ N
2

= lim
t→∞ |〈N/2|ψ (t )〉|2. (13)

Following Ref. [76], the former one has the exact form

p0→0 = exp

[
−2πτQh2

x

N/2∑
n=1

|〈n|Hx|0〉|2
|〈n|Hz|n〉 − 〈0|Hz|0〉|

]
, (14)

which translates into p0→0 = exp[−NπτQh2
x ] [75]. Fig-

ure 5(b) shows the profile of p0→0 for different values of
N that perfectly matches the analytical prediction. Moreover,
for τQh2

x � 1 only transitions between |0〉 and states |n〉 with
low density, n � N , become relevant. The total probability
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FIG. 5. (a) Density of 1-bubbles λ1 as a function of τQh2
x af-

ter a ramp across hz = 2. Here, the effective Hamiltonian (12) is
benchmarked against a direct TDVP simulation. The curve crosses
over from the low-density linearized LZ formula (9) with n = 1 to
the high-density LZ profile (16). (b) The multilevel LZ transition
probability p0→0 as as function of τQh2

x for different system sizes N .
The dashed line is the analytical formula p0→0 = exp[−NπτQh2

x ].
(c) The superadiabatic transition probability p0→ N

2
as a function of

τQh2
x for different N fitted with the exponential function p0→ N

2
=

1 − exp[−αNπτQh2
x ].

of these transitions is 1 − p0→0. Therefore, in this regime the
density of 1-bubbles λ1 = 1

N (1 − p0→0) ≈ πτQh2
x , confirm-

ing the earlier analysis again.
On the other hand, when the curve in Fig. 5(a) reaches the

superadiabatic regime, τQh2
x � 1, there is only one relevant

LZ anticrossing. The initial metastable state |0〉 crosses over
to the final state |N/2〉 with probability p0→ N

2
and (1 − p0→ N

2
)

becomes a small excitation probability to the state |N/2 − 1〉.
An analytical derivation of p0→ N

2
from the multilevel LZ

problem is beyond the scope this work. However, we find the
following form,

p0→ N
2

= 1 − exp
[−αNπτQh2

x

]
, (15)

where the coefficient αN decreases with N [75] [see Fig. 5(c)].
Therefore, the 1-bubble density in this regime is

λ1 = 1

N

[
N

2
p0→ N

2
+

(
N

2
− 1

)(
1 − p0→ N

2

)]

= 1

2
− 1

N

(
1 − p0→ N

2

)
, (16)

which is in good agreement with Fig. 5(a).
Conclusion and outlook. We have shown that the metasta-

bility pertained to FOQPT in the quantum Ising model under
transverse and longitudinal fields is lost in successive stages
in quenches across the FOQPT point, that occurs due to the
quantized nucleation of bubbles. Specifically, we have iden-
tified special resonant regions in the longitudinal field (hz =
2/n), where the metastable state can easily tunnel to nucleate
bubbles of a specific size n, which are nth-order perturbative
processes in the transverse field hx. Moreover, we have uni-
fied this entire nonadiabatic process under the umbrella of
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Landau-Zener theories—the low-density nucleations can be
understood through two-level Landau-Zener transitions, while
at higher densities the situations translate to the multilevel
Landau-Zener problems.

Furthermore, our work can be easily generalized to higher
dimensions, where the special resonant points become hz ∝
S/V . Here, S is the surface area and V the volume of a bubble,
each of them taking discrete values. The physical implemen-
tation of the transverse Ising model with a chain of Rydberg
atoms provided a spectacular demonstration [25] of the quan-
tum Kibble-Zurek mechanism. Within 2 years following this
breakthrough, the number of Rydberg atoms increased from
50 in 1D [25] to a few hundred in 2D/3D structures [77,78].

Such marvelous achievements on the experimental front make
it possible to explore regimes where the nucleation of bubbles
manifests a quantized nature, not only in 1D but also in higher
dimensions.
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