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Phases of the disordered Bose-Hubbard model with attractive interactions

Olli Mansikkamäki , Sami Laine , and Matti Silveri
Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland

(Received 15 January 2021; revised 26 May 2021; accepted 8 June 2021; published 23 June 2021)

We study the quantum ground-state phases of the one-dimensional disordered Bose-Hubbard model with
attractive interactions, realized by a chain of superconducting transmon qubits or cold atoms. We map the phase
diagram using perturbation theory and exact diagonalization. Compared to the repulsive Bose-Hubbard model,
the quantum ground-state behavior is dramatically different. At strong disorder of the on-site energies, all the
bosons localize into the vicinity of a single site, contrary to the Bose glass behavior of the repulsive model. At
weak disorder, depending on hopping, the ground state is either superfluid or a W state, which is a multisite
and multiparticle entangled superposition of states where all the bosons occupy a single site. We show that the
robustness of the W phase against disorder diminishes as the total number of bosons increases.
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I. INTRODUCTION

The Bose-Hubbard model is a paradigmatic model of
quantum matter and quantum phase transitions, with applica-
tions ranging from magnetism to disordered superfluid helium
[1–4]. It is canonically characterized by a repulsive boson-
boson interaction disfavoring local multi-occupancy, together
with boson hopping which models excitation kinetics. When
repulsive interaction dominates hopping, the ground state is
the Mott insulating phase where a fixed integer number of
bosons are located on each lattice site. Otherwise, the ground
state is the delocalized superfluid [5,6]. In the presence of
disorder, a third phase—the Bose glass—emerges between
the Mott insulator and the superfluid phases [6–14]. The Bose
glass is an insulating phase with finite compressibility caused
by disorder localization.

The attractive Bose-Hubbard model has remained much
less studied than its repulsive counterpart. At strong disorder,
many-body localization emerges [15–17] for highly excited
states. The quantum ground-state behavior changes dramati-
cally when switching from repulsive to attractive interaction
[18–22]. When attractive interaction dominates hopping, in
the absence of disorder, the ground state is the W state, a
fascinating self-trapped multiparticle entangled state compris-
ing a cat-state-like superposition of states with all the bosons
occupying a single site [23–25]. However, the interplay of
disorder and attractive interactions has not been studied before
for the quantum ground states.

The attractive Bose-Hubbard model is an important model
for arrays of superconducting transmon devices, a leading
platform for large-scale quantum science experiments. A
transmon is an anharmonic bosonic oscillator with negative
anharmonicity [26]. Fabrication disorder [27] has hindered
their utilization in large-scale quantum simulators [28,29] of
other than disorder physics [15,17,30–32]. The size of exper-
imentally demonstrated transmon arrays has grown rapidly
from a few to over 50 sites [30–38]. Thus, an array of coupled

transmons realizes the disordered attractive Bose-Hubbard
model in a natural manner [16,33]. Furthermore, the attractive
Bose-Hubbard model is immediately applicable also for cold
atoms in optical lattices, where the interaction can be tuned
from repulsive to attractive via the Feshbach resonance [4,39].

In this letter, we use exact diagonalization and perturbation
theory to construct the ground-state phase diagram of the one-
dimensional disordered attractive Bose-Hubbard model, and
provide analytical expressions for the states belonging to the
W phase, the superfluid phase, and the localized phase. Our
main result is that the robustness of the W phase against dis-
order diminishes exponentially as the total number of bosons
is increased. Finally, we propose a possible realization of these
phases using transmon chains with experimentally feasible
parameters.

We note that phases and phase transitions are, strictly
speaking, only defined in the thermodynamic limit, that is,
when both the number of lattice sites and the number of
particles approach infinity. For the Bose-Hubbard model with
attractive interactions, this is ill-defined since the two limits
are noncommutative [21] and the ground-state energy is not
bounded below. However, seeing that the finite-size behavior
of the model resembles that of a system with well-defined
phases, the concept of phase is frequently used [21,25,40].

II. MODEL

The disordered attractive Bose-Hubbard model with L sites
is defined in the basis of the local bosonic annihilation â�,
creation â†

� , and occupation number n̂� = â†
� â� operators by

the Hamiltonian [15,16,33,34]

Ĥ

h̄
=

L∑
�=1

[
ω�n̂� − U

2
n̂�(n̂� − 1) + J (â†

�+1â� + â†
� â�+1)

]
.

(1)
Here, ω� represent random disorder of on-site energies. We
draw them from a uniform distribution in the interval ω� ∈
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FIG. 1. A schematic illustration and the local occupation density pn� = 〈n|ρ̂�|n〉 as a function of the transmon site � and the local Fock state
|n〉 for (a) the localized state, (b) the W state, and (c) the superfluid state at the scaled hopping frequency τ = 0.05, 0.15, and 1, respectively. A
single disorder realization at the scaled disorder strength δ = 0.33 × 10−3 was used. The local density matrix ρ̂� is calculated by tracing over
all the other sites: ρ̂� = Tr{i �=�}(|ψ〉 〈ψ |), where |ψ〉 is the ground state.

[−D, D], with D being the strength of the disorder. Since the
model conserves the total number of bosons N̂ = ∑L

�=1 n̂�,
we consider a fixed N and can thus ignore the mean on-site
energy. The strength of the attractive interactions is given
by U , and J is the hopping frequency. Finally, h̄ is the re-
duced Planck’s constant. The bounded spectrum at fixed N
implies that the most excited eigenstate of the Hamiltonian
(1) is the quantum ground state of the corresponding re-
pulsive model and vice versa. For the sake of experimental
relevance, we focus on open chains with âL+1 = 0 in Eq. (1)
(see Ref. [41] for the corresponding results for a periodic
chain). In what follows, we measure all energies in units of
the characteristic energy h̄UN (N − 1), yielding the scaled en-
ergy ε = E/h̄UN (N − 1), hopping frequency τ = J/U (N −
1), disorder strength δ = D/U (N − 1), and on-site energies
σ� = ω�/U (N − 1).

III. LOCALIZED PHASE

Let us first consider strong attractive interactions and
strong disorder δ � 1/(N − 1) � τ . The attractive interac-
tions force all the bosons to occupy the site �0 with the lowest
on-site energy σ�0 , leading to total energy ε0

loc = −1/2 + σ�0 .
With strong disorder and ignoring hopping, the ground state
is a product state of the form∣∣ψ0

�0

〉 = |n�0 = N〉 , (2)

where |n�0 = N〉 denotes the state where N bosons occupy the
site �0 and other sites are empty. We refer to this as the local-
ized state, not to be confused with Anderson localization of
the noninteracting situation or the many-body localization of
the highly excited states [15–17]. When we take into account
the hopping up to first order in nondegenerate perturbation
theory, the localized state |ψ0

�0
〉 gets a correction of the form

∣∣ψ̃1
�0±1

〉 = τ
√

N

∣∣n�0±1 = 1, n�0 = N − 1
〉(

σ�0 − σ�0±1
) − 1

, (3)

that is, a state localized onto the site �0 will be∣∣ψ1
�0

〉 = ∣∣ψ0
�0

〉 + ∣∣ψ̃1
�0+1

〉 + ∣∣ψ̃1
�0−1

〉
, (4)

up to a normalization factor [see Fig. 1(a)]. The same form
applies to every localized state excepting the ends, where only
a single correction is added. After averaging over the disorder,
the second-order energy of the localized ground-state phase is

εloc = −1

2
− δ

L − 1

L + 1
(1 − 2τ 2) − 2τ 2 L − 1

L
. (5)

When reducing disorder, the ground-state phase changes ei-
ther into the superfluid phase or into the W phase, depending
on hopping.

IV. W PHASE

Let us next consider weak hopping, τ � 1, in the absence
of disorder. Then the states |n�=1,...,L = N〉 with the energy
ε0 = −1/2 are degenerate and coupled by a weak high-order
hopping interaction, yielding a quantum ground state which
is a superposition of the localized states |ψ1

� 〉 of Eq. (4), see
Fig. 1(b). This state is called the W state [25,42,43] because
of its resemblance with the W state of entangled qubits [44].

To solve the W state analytically, we resort to high-order
degenerate perturbation theory [45], detailed in Ref. [41].
First, the sites at the ends of the open chain have only one
neighbor each. Thus, the effective hopping energy near the
ends is higher than elsewhere, reducing the number of degen-
erate states by �s = 	N/2
 − 1 counting from both ends of
the chain. For simplicity, let us consider even L and odd N ,
such that the number of degenerate states Ld = L − 2�s � 2.
Then the degenerate perturbation theory in the N th order
shows that the remaining states |n� = N〉 are each coupled
with their neighboring-site counterparts, which gives us the
superposition [see Fig. 1(b)]

∣∣ψ1
W

〉 =
√

2

Ld + 1

Ld∑
�=1

(−1)� sin

(
π�

Ld + 1

) ∣∣ψ1
�+�s

〉
. (6)

The existence of the W state requires a nonzero hopping
frequency, which is why we use the first-order perturbed states
of Eq. (4) in the superposition. The shape of the W state
depends strongly on the total density N/L of the bosons—
the higher the density, the more the bosons bunch toward
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the middle of the chain, forming a self-trapping state [22].
For even L, the limit is an equal superposition of the two
middlemost localized states of Eq. (4). For odd L, the limit
is just the middlemost localized state. The mean second-order
energy of the W state is

εW = − 1
2 − 2τ 2, (7)

with no disorder contribution after averaging over different
realizations.

When introducing disorder, we can probe the weak interac-
tion between the degenerate states formed through high-order
bosonic hopping. The magnitude of the N th order hopping in-
teraction between the state |n� = N〉 and the states |n�±1 = N〉
is [α(N )τ ]N , where α(N ) = [(N − 1)N−1/(N − 1)!]1/N is a
coefficient dependent on the boson number. At large N , the
value of α(N ) approaches Euler’s number e. The magnitude
of disorder needs to be of the same order or stronger than
this effective hopping energy to cause the W state to disin-
tegrate into a localized state. To sum up, at weak disorder
and hopping, the W phase can exist only when δ � [α(N )τ ]N ,
showing that the robustness of the W phase against disorder
diminishes exponentially with increasing total boson number.

V. SUPERFLUID PHASE

When hopping dominates interactions, τ � 1, the bosons
can move from site to site largely unhindered by each other,
that is, the ground state is a superfluid. It is easier here to work
in the reciprocal space, i.e., in the eigenbasis of the hopping
term of the Hamiltonian, accessible via the transformation

ĉk =
√

2

L + 1

L∑
�=1

sin

(
π�k

L + 1

)
â� (8)

in the open chain. Analogously to the spatially localized states
of Eq. (2), we may form localized states in the reciprocal space∣∣ψ0

k

〉 = |ηk = N〉 , (9)

where |ηk = N〉 denotes the state where N bosons occupy
the kth reciprocal mode and other modes are empty. In the
limit of vanishing interactions and disorder, the superfluid
ground state |ψ0

SF〉 = |ψ0
k=L〉 is completely localized to the

lowest-energy mode of the reciprocal space, k = L, with the
energy ε0

SF = −2τ cos[π/(L + 1)]. Although the excitations
created via ĉ†

k are localized in the reciprocal space, they are
delocalized in the position space, see Fig. 1(c) and Ref. [41]
for visualizations. Both the interaction term and the disorder
term have a weakly delocalizing effect in the reciprocal space,
similar to the effect of the hopping term on the spatially
localized state. The ground state can be calculated by first
transforming these into the reciprocal basis and considering
their effects perturbatively [41]. The second-order disorder-
averaged energy is given by

εSF = −2τ cos
( π

L + 1

)
− 3

4(L + 1)
− a

τ
(δ2 + b), (10)

where a and b are coefficients dependent on N and L (at N = 4
and L = 8, a ≈ 0.23 and b ≈ 0.05, see Ref. [41]). Notice that
this condensate of bosons can indeed be called a superfluid

since it is able to support metastable persistent currents in a
periodic chain [46,47].

VI. PHASE DIAGRAM

Analytical results indicate that we could expect ground-
state phase transitions at parameters where the energies of any
two phases [Eqs. (5), (7), and (10)] are close. To study this in
detail, we calculate the quantum ground state of the Hamil-
tonian (1) by numerical exact diagonalization. To identify all
three phases in numerical calculations, we need at least two
indicator quantities. We can use the fact that the states are
characterized by different types of localization: the localized
and superfluid phases are localized in spatial and reciprocal
bases, respectively, and the W state is a superposition of
spatially localized states. One quantity measuring the degree
of localization is the inverse participation ratio

Ps/r = 1

L − 1

(
N2∑L

m=1 | 〈ψ |n̂s/r
m |ψ〉 |2 − 1

)
, (11)

which we can calculate in both the position space (Ps) and
in the reciprocal space (Pr ) separately. Here, n̂s

m = â†
mâm and

n̂r
m = ĉ†

mĉm are the number operators in the corresponding
spaces. The inverse participation ratio yields zero if the state
is localized and one if the state is completely delocalized. We
can use Ps to distinguish the spatially localized states from the
superfluid states and the W states. Conversely, we can use Pr

to distinguish the superfluid states from the W states and the
localized states.

Keeping in mind the theoretical limitations of increasing
the total boson number N mentioned in the Introduction, we
are nevertheless interested in the phase boundaries of the three
phases as the system size in N is increased, which physically
means approaching the semiclassical limit. For this purpose,
we define the critical scaled hopping frequency [48]

τ s/r
c = argmax

τ

∣∣∣∣∂ Ps/r

∂ τ

∣∣∣∣ (12)

to locate the transition point from localized to delocalized
state both in the position space (τ s

c ) and in the reciprocal
space (τ r

c ).
In Fig. 2(a), we show the inverse participation ratios Ps/r

for the ground states of the Hamiltonian (1) as a function of
the scaled hopping frequency τ at weak disorder. The critical
scaled hopping frequencies τ

s/r
c indicate that the system lo-

calizes in the position space (solid) when τ < τ s
c ≈ 0.11 and

in the reciprocal space (dashed) when τ > τ r
c ≈ 0.17. In the

region between, we identify the W state which is delocalized
spatially but not yet localized in the reciprocal space. Note
that Pr attains its maximum at a nonzero τ , within the W
phase. This stems from the fact that, due to the shape of the
transformation (8), a superposition of spatially localized states
can be more uniformly distributed in the reciprocal space than
a single localized state. However, as the number of bosons
N grows, the W state gets more and more localized towards
the middle of the chain, and thus the local maximum of Pr at
τ > 0 disappears. At moderate disorder, depicted in Fig. 2(b),
increasing hopping simultaneously delocalizes the system in
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FIG. 2. (a), (b) In white, the inverse participation ratios Ps (solid)
and Pr (dashed), defined in Eq. (11), of the quantum ground state of
the disordered attractive Bose-Hubbard model (1) as a function of
the scaled hopping frequency τ at two values of the scaled disorder
strength, (a) δ = 0.001 and (b) δ = 0.036. In black, the correspond-
ing critical scaled hopping frequencies τ s/r

c defined in Eq. (12).
(c) The two inverse participation ratios Ps/r , represented as a single
colormap, as a function of the scaled hopping frequency τ and the
disorder strength δ. The amount of blue (red) indicates the value of
Ps (Pr): The bluer (redder) the pixel, the more delocalized the ground
state is spatially (in the reciprocal space). When both of the inverse
participation ratios are nonzero, the color of the corresponding pixel
is purple, indicating the W phase. The overlaid lines indicate the
phase boundaries estimated from the analytical results: localized-
to-W at δ = 2(ατ )N (white dashed line), superfluid-to-localized at
εSF = εloc (gray dash-dotted line), and W -to-superfluid at εW = εSF

(yellow dotted line). The arrows indicate the locations of the horizon-
tal cutoffs shown in (a) and (b). The ground states were numerically
computed for an open chain of length L = 8 with the total number
of bosons N = 4, and averaged over 1000 disorder realizations. See
Ref. [41] for the results for corresponding periodic chains. Note that
τ � 0.05 in this and all the following figures.

the position space and localizes it in the reciprocal space, with
a crossover at τ ≈ 0.23, indicating absence of the W state.

To explore the ground-state phases in the full parameter
space, we computed the inverse participation ratios Ps/r as a
function of both the scaled hopping frequency τ and the scaled
disorder strength δ. These are represented in Fig. 2(c) as a
colormap, where the amount of blue (red) color in each pixel
indicates the value of Ps (Pr). In the W phase, both indicators
are nonzero, shown with purple color. Notice that with N = 4
and L = 8, the W phase exists only at δ � 0.03. At stronger
disorder, there is a direct transition from the localized phase
into the superfluid phase. The overlaid lines of Fig. 2(c) indi-
cate the phase boundaries predicted by equating the analytical
ground-state energies.

FIG. 3. The critical scaled hopping frequencies (a) τ r
c (colored

filled triangles) and (b) τ s
c (colored filled circles), defined in Eq. (12),

as a function of the total boson number N = 4, . . . , 9 and the scaled
disorder strength δ. The chain length is L = 8 and the results are
averaged over 2000 disorder realizations. The analytically predicted
phase boundary between the localized phase and the W phase is
shown as colored lines at δ = 2[α(N )τ s

c ]N in (b).

At strong disorder, the localized phase changes into the
superfluid phase near the curve εloc = εSF (dash-dotted line).
At weak disorder, the superfluid phase changes into the W
phase in the proximity of the curve εSF = εW (dotted line),
while the W phase disintegrates into the localized phase
at δ = 2[α(N )τ ]N (dashed line). Here, the numerical coef-
ficient 2 in the localized-to-W boundary was obtained by
fitting the analytically predicted expression (see Ref. [41])
δ = (3A/2)[α(N )τ ]N , with A a constant of the order of unity,
to the numerical data.

Figures 3(a) and 3(b) show the critical hopping frequencies
τ r

c and τ s
c , respectively, as a function of the disorder strength δ

for varying total boson number N . In Fig. 3(a), the transition
between the W phase and the superfluid phase shifts towards
larger hopping frequency as N is increased. We can explain
this qualitatively through the fact that the coupling between
the reciprocal modes by the interaction term of the Hamil-
tonian (1) increases with N , contained in the coefficients a
and b of Eq. (10). In Fig. 3(b), the data points indicate the
transition between the localized and the W phase. Here, we
observe clearly that the W phase exists only at δ � 2[α(N )τ ]N

(solid colored lines), confirming our analytical prediction.

VII. REALIZATION WITH TRANSMON ARRAYS

With transmon arrays, the hopping term is realized by the
capacitive coupling between the transmons [26,29], resulting
in the value of J/2π ranging between 10 MHz and 100 MHz.
The interaction term originates from an approximation of
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the cosinusoidal potential of the Josephson junctions of the
transmons [26], with typical values of U/2π between
200 MHz and 300 MHz. The disorder ω� models the small un-
intentional variations in manufactured devices, but it can also
be artificially magnified or reduced by applying magnetic flux
through the loop formed by the two parallel Josephson junc-
tions of the transmons [15,16,26,33,34,36], yielding D/2π in
the range from 100 kHz to 2 GHz. The experimentally realistic
range of parameters belongs roughly to the interval J/U ∈
[0.03, 0.5] and D/U ∈ [10−4, 102], allowing the realization
of all the ground-state phases of the disordered attractive
Bose–Hubbard model. For modern transmons, the rate �1 of
losing bosons (photons) is low [32,34,37], with �1/2π in the
range of a few kHz. This should be contrasted with the effec-
tive hopping frequencies in the system. For example, in the
W phase, the ratio between the effective hopping frequency
J̃ = UN (N − 1)[α(N )τ ]N and the many-body dissipation rate
is J̃/(N�1) � 50 with the parameters of Ref. [37], indicating
an ample window of coherent dynamics to form and detect the
W phase before a disruptive photon loss event.

The Hamiltonian (1) becomes increasingly worse a model
of a transmon array as the number of bosons on a single site
increases, since the interaction term −Un̂(n̂ − 1)/2 is just
the lowest anharmonicity term of the cosine potential of the
Josephson junction [26]. However, a more fundamental limi-
tation is that the cosine potential also implies that a transmon
has only a finite number of discrete bound states [49]. This
number for modern transmon parameters is ω0/(

√
8U ) ≈ 10,

with ω0 the mean on-site energy. Adding more bosons will
change the transmon spectrum and couplings, rendering the
Bose-Hubbard model insufficient. This warrants our choice of
N < 10.

To detect and distinguish the state, the population of every
transmon or a subset of them can be measured with high
accuracy by coupling them individually to dispersive readout
resonators [50], as demonstrated recently in many-body set-
tings [15,34]. This way, one can measure the local occupation
density that uniquely identifies each phase as shown in Fig. 1.
By utilizing the sophisticated driving protocols, one can re-
alize cooling and stabilization schemes that can be used to

achieve the quantum ground states at fixed boson numbers,
as was experimentally demonstrated in the seminal works
[33,34].

VIII. CONCLUSION

In this work, we concentrated on the static ground-state
properties of the attractive Bose-Hubbard model with weak-
to-moderate energy disorder. We mapped the ground-state
phase diagram and focused on the W phase, which can be
experimentally realized with transmon arrays only within
stringent bounds for the disorder and coupling strengths. See-
ing that decoherence and dissipation are common issues in
superconducting quantum devices, and that the loss of bosons
can change the nature of the ground state, even a system
starting from the ground state for a given number of bosons
N may experience quite interesting dynamics. Specifically,
even if the bare system parameters J and U are not changed,
boson losses due to dissipation effectively act as quenches in
the scaled hopping frequency τ = J/U (N − 1) and disorder
strength δ = D/U (N − 1). This allows for the exploration of
the parameter space (τ, δ), although only in discrete steps. A
more detailed discussion of the dynamics due to dissipation
and quenches in the parameters of the model, including a
potential realization of dynamical quantum phase transition
[51,52], is an interesting subject of future work. Another
intriguing question is the structure of the ground-state phase
diagram in two and higher dimensions, relevant even for cur-
rent transmon arrays [36].
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