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Local integrals of motion and the quasiperiodic many-body localization transition
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We study the many-body localization (MBL) transition for interacting fermions subject to quasiperiodic
potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local
operators. We study numerically how these time-averaged operators evolve across the MBL transition. We
find that the norm of such time-averaged operators drops discontinuously to zero across the transition; as we
discuss, this implies that LIOMs abruptly become unstable at some critical localization length of order unity. We
analyze the LIOMs using hydrodynamic projections and isolating the part of the operator that is associated
with interactions. Equipped with these data we perform a finite-size scaling analysis of the quasiperiodic
MBL transition. Our results suggest that the quasiperiodic MBL transition occurs at considerably stronger
quasiperiodic modulations and has a larger correlation-length critical exponent than previous studies had found.
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Intuition suggests that isolated many-body systems ini-
tialized out of equilibrium should “thermalize” under their
intrinsic unitary dynamics, in the sense of approaching a state
in which local observables and correlation functions exhibit
equilibrium behavior [1–4]. Since Anderson’s work [5], it
has been understood that thermalization is not fully generic:
Systems subject to strong quenched randomness can instead
exhibit a many-body localized (MBL) phase, in which ther-
malization fails, and the system instead retains a local memory
of its initial conditions to arbitrarily late times [4,6–11]. This
memory is due to the existence in the MBL phase of (quasi-
)local operators that are exact integrals of motion, called local
integrals of motion (LIOMs) or l-bits [11–19]. The existence
of the MBL phase and of LIOMs has been established un-
der minimal assumptions in one-dimensional random spin
chains [11]; experimental evidence for the MBL phase exists
in many different settings [20–33] (but see Refs. [34–41]).
Rare regions—i.e., regions of a sample in which the disor-
der is anomalously weak or strong—play a central part in
our understanding of MBL, determining the nature of the
MBL transition [42–51], response on both sides of the tran-
sition [52–63], and even the stability of the MBL phase in
higher dimensions [56,64]. However, many experiments on
the MBL phase treat systems subject to quasiperiodic (QP)
rather than random potentials [20,24,65–72]. Noninteracting
1d QP systems have a localized phase [73], which appears
to be perturbatively stable in the presence of interactions
[65]. However, rare regions are absent in QP systems, so it
seems that the MBL transition—and the response near it—
must differ qualitatively from the random transition [66]. The
numerical evidence on the QP-MBL transition is mixed, with
some studies casting doubt on whether a transition exists at
all [74], while others find a breakdown of diffusion [67,75],
potentially even in a regime where single-particle states are
delocalized [76,77].

Most work on QP-MBL systems has worked in the
Schrödinger picture, considering the properties of typical in-
dividual eigenstates across the transition. The response of
typical eigenstates in the MBL phase to a probe will involve
both the external QP potential and the self-generated config-
urational randomness from the random pattern of occupation
of localized orbitals (which exert random Hartree shifts on
one another). Thus from the eigenstate perspective there is
no clear distinction between random and QP MBL systems;
since the transition is really an instability of the MBL phase,
one might be led to conclude that the transition should also be
the same. In the present work, we instead take the Heisenberg
perspective and focus on the properties of the LIOMs as op-
erators [78]. In the QP-MBL phase, the pattern of LIOMs is
QP, with LIOMs approximately repeating at regular distances
that are rational approximants to the QP pattern; there are no
rare regions with anomalous LIOMs. Thus from this operator
perspective the QP and random MBL phases differ, and one
would also expect the transition at which LIOMs cease to exist
to differ, if rare regions are indeed important. (Whether this
transition coincides with the transition into the thermal phase
is an issue we revisit below).

In the present work we explicitly construct LIOMs in QP
systems by time-averaging local operators, as first proposed
in Ref. [15]. We perform the infinite-time average explic-
itly via full diagonalization {we also explore tensor-network
methods [79] (see, also, references [80–84] therein)}. We an-
alyze these LIOMs by computing the fraction of the operator
norm that comes from n-fermion terms in the expansion O =
Ai jc

†
i c j + Bi jkl c

†
i c†

j ckcl + . . . using tensor-network methods
to efficiently extract these quantities [79]. These n-fermion
weights give us a handle on the specifically many-body effects
that occur at the transition: Unlike transport and entanglement,
it is not contaminated by the single-particle critical point,
which lies somewhat near the apparent many-body transition.
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We find that the n-fermion weights and the norm of the LIOMs
give us new ways of analyzing the transition, pointing to a
transition that occurs at larger values of the QP potential,
with different critical exponents, than previously expected.
This transition has notable similarities to the random case;
in particular, the LIOMs slightly on the MBL side of the
transition are tightly localized. Thus, as in the random case,
it seems that the QP-MBL transition is an instability of the
localized phase, which sets in at some critical value of the
localization length. The microscopic origin of this instability
remains unclear.

Model.– We consider the following model,

H =
L−1∑
i=1

(XiXi+1 + YiYi+1 + V ZiZi+1) +
L∑

i=1

hiZi, (1)

where X,Y, Z denote the Pauli matrices and hi =
h cos(2π/ϕ(i − L/2) + φ), where ϕ = 1+√

5
2 and φ is a

phase offset that we tune to translate our window. When
V = 0, this is the noninteracting Aubry-André model which
has localized eigenstates for h > 2 and extended eigenstates
for h < 2. At nonzero V , finite-size exact-diagonalization
studies [65–67] of the average eigenstate entanglement and
level statistics ratio have found an MBL transition at hc ≈ 3
with a critical exponent ν ∼ 1. (However, studies on longer
spin-chains using the time-dependent variational principle
have seen a larger critical point, consistent with ours [70]). In
this letter we set V = 1/2.

Following [15], we construct LIOMs for this model by time
averaging a local operator O, which we choose to be ZL/2. The
time average of O is given by

Ō ≡ lim
T →∞

1

T

∫ T

0
dt O(t ) =

∑
E

〈E |O|E〉|E〉〈E |, (2)

where |E〉 are eigenstates of H . In the MBL phase, we expect
Ō to be an approximately local operator with exponential tails,
i.e., we expect there is some operator On with support on n
sites such that ‖O − On‖F � e−n/ξ where ξ is a characteristic
localization length and ‖ · ‖F denotes the Frobenius norm.
In the ergodic phase, the time average instead produces a
non-local integral of motion, predominately the projection
of O onto conserved charges. We construct Ō by full ex-
act diagonalization, using Eq. (2). We explore finite-time
averages, performed using exact diagonalization as well as
matrix-product methods, in [79].

Fermion weights.— We analyze the LIOMs by expanding
them in a basis of n-fermion operators. These are related to
the Pauli operators by a Jordan-Wigner transformation, and
evidently form a complete basis:

Ō =
∑

α

cαw
α1
1 w

α2
2 · · ·wα2L

2L , (3)

where {wi,w j} = 2δi j are Majorana fermions. In what fol-
lows we will focus on two quantities: the Frobenius norm
of the operator, N ≡ Tr(Ō2), and its two-body weight f2,
defined by

f2 = 1

N
∑
|α|=2

|cα|2, N =
∑

α

|cα|2. (4)

We can also define four- and six-body weights accordingly. As
f2 is 1 for quadratic fermion operators, 1 − f2 = f4 + f6 +
. . . measures the many-body content of the operator. (These
weights can be efficiently computed using matrix-product op-
erator methods; we outline these methods and present results
on the weights fn with n > 2 in [79]). Note that N and
f2 probe complementary aspects of the time evolution: N
addresses how much of the initial-state information survives
in the time average, while f2 addresses what fraction of this
information is encoded in “simple” (i.e., few-body) operators.

Hydrodynamic modes.— Fig. 1(a) shows the average and
distribution of f2. As we might expect, f2 approaches 1 and
we also find that N is of order unity in the MBL phase, since
in this phase the LIOMs are approximately single-site occu-
pation numbers. Less obviously, f2 also approaches 1 deep
in the thermal phase (although N , not shown, goes to zero
with system size). One can understand this as follows. The
operator O = Zi has some overlap with the total conserved
charge, I1 ≡ ∑

i Zi, which is conserved (and is a two-fermion
operator), and also with the Hamiltonian I2 = H (which con-
tains two- and four-point operators). More generally, in a
system of size L, there are 2L nonlocal conserved operators,
i.e., projectors onto eigenstates, while the operator Hilbert
space is 4L-dimensional. Since the operator O at late times
under chaotic dynamics is essentially random, its projection
onto the conserved eigenstates would be exponentially small
in L if it were not for local conservation laws. Neglecting
these exponentially small components, one can write Ō in
the thermal phase as its projection onto hydrodynamic modes
using the (super) projector

P =
∑

l,k=1,2

|Ik〉〉C−1
kl 〈〈Il |, (5)

where I1 = ∑
i Zi and I2 = H the conserved charges, acting

on a Hilbert space H, are now viewed as states on the doubled
Hilbert space H ⊗ H, and Ckl = 〈〈Ik|Il〉〉 the susceptibility
matrix with 〈〈A|B〉〉 ≡ 2−Ltr(A†B). Since H and Q are both
composed of two- and four-body operators, f2 remains of
order unity throughout the thermal phase.

Since the hydrodynamic modes exist on both sides of the
transition and the projection of an operator onto these modes
is a property of the t = 0 operator that is insensitive to critical
properties, we subtract the projection onto this hydrodynamic
subspace and define the “subtracted operator”

Ōsub ≡ Ō − P (O)

‖O − P (O)‖ . (6)

The denominator in Eq. (6) corrects for the fact that the hydro-
dynamic projection of O smoothly increases with increasing
disorder, since the Hamiltonian is dominated by single-site
potential terms. (Empirically, we find that not fixing the
normalization of Ōsub leads to spurious finite-size drifts in
small-system numerics). The norm Nsub is defined as for
the full operator. We also introduce the subtracted two body
component, f̃2sub, defined as

f̃2,sub ≡
∑

i< j |tr(Ōsubwiw j )|2∑
i< j |tr(Osub(0)wiw j )|2 . (7)
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FIG. 1. (a) Evolution of the fraction f2 of the weight of the time-averaged operator Ō that comes from fermion bilinears vs QP potential
h. The solid lines are the average over the phase offset φ and the “violin” shapes indicate the distribution over φ (to see the behavior of the
distributions one only needs to look at the “left” or “right” half of the violin). (b) Subtracted norm Nsub of Ō vs h, where the subtracted
operator is defined by projecting out hydrodynamic modes, Eq. (6). Note the crossing at h ≈ 4. Inset shows the evolution of Nsub with system
size, indicating an instability that sets in as the system size is increased, even for h = 3.5 where previous studies have seen an MBL phase.
(c) Two-body component of the subtracted operator, defined in Eq. (7); once again, this shows a crossing that is consistent with a discontinuous
jump at the MBL transition. (d) The quality factor, Q, of the finite-size scaling collapse of the curves in (b, c) as a function of the chosen
collapse parameters hc, ν. Q is optimal when it is equal to 1 and in general Q � 1. The yellow dot marks the minimum of the cost function;
by eye, the best collapse is for slightly different parameters (green dot) [these collapses are shown in (e) and (f)]. The transition seen in level
statistics is marked by the red dot; our data are clearly inconsistent with these values. For all figures, averaging was performed over 200 phases
equally spaced in the interval (0, 2π ). The color scheme for different system sizes is shared for (b), (c), (e), and (f).

The rationale behind this normalization is, once again, to
correct for the changes in the four-fermion weight of the
subtracted operator as a function of h.

Results.—Our results are summarized in Fig. 1. Figure 1(a)
shows the two-body weight f2 of the full time-averaged opera-
tor (which, as noted above, is always ZL/2); as we expect, this
is non-monotonic because it is dominated by hydrodynamic
modes on the thermal side of the transition and by single-
site operators deep on the MBL side of the transition. The
sample-to-sample (or, equivalently, site-to-site) fluctuations of
this quantity are large and size-independent deep in the MBL
phase, negligible deep in the thermal phase, and intermediate
in magnitude near the transition. Note that there is clear finite-
size drift of f2 for fields as large as h = 4, which previous
literature [65–67] has assumed to be deep in the MBL phase.

We now turn to the properties of the subtracted operator
(6). Fig. 1(b) shows its norm, which decreases with system
size in the thermal phase but saturates in the MBL phase. The
decrease in the thermal phase is consistent with an exponential
[79], which is what we would expect since we projected out
hydrodynamic contributions. Similarly, the subtracted two-
body component f̃2,sub decreases continuously in the thermal
phase and saturates in the MBL phase: This is, again, expected
since the residual finite-size contributions to Ōsub in the ther-
mal phase are highly nonlocal and have negligible two-body
components.

While both quantities vanish identically in the thermody-
namic limit throughout the thermal phase, it is not a priori
obvious whether they should rise continuously from zero or
jump discontinuously at the MBL transition. Our numerical
results strongly suggest the latter: The curves for both Nsub

and f2,sub vs system size cross in the interval h ∈ (4, 4.5);
moreover, the crossing shifts weakly to larger h with increas-
ing system size, suggesting that there are relatively “simple”
LIOMs (with large two-body component) all the way up
to the transition. This is consistent with a picture where
the QP-MBL phase becomes unstable to thermalization at
some critical value of the QP potential, but remains deeply
localized all the way up to the transition. In the random
case, “avalanche”-based theories of the MBL transition gen-
erally predict this behavior, and it is also consistent with the
available numerical evidence [57,59,85–87]. However, since
avalanches do not obviously occur in QP systems, this behav-
ior is unexpected (and had not previously been numerically
observed to our knowledge).

Another unexpected feature of these results is that the
transition point and its critical properties differ quite strongly
from those seen in previous numerical studies [Figs. 1(d)–
1(f)]. Collapsing our finite-size data to the single-parameter
scaling form φ(L, h − hc) = φ(L1/ν |h − hc|/hc), where ν is
the correlation-length exponent, we find that the data collapses
well in the parameter range hc ∈ (4, 4.5), with values of ν ∈
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(2, 3). These results are very different from the expectation
(gleaned, e.g., from studying the level statistics) that hc ≈ 3
and ν ≈ 1. In Fig. 1(d) we have plotted the figure of merit
(specifically, the log quality factor | log Q| extracted from the
Python package pyfssa [88]) for attempted data collapses with
various possible combinations of hc and ν: Our numerical
data for the transition in the LIOMs are evidently inconsistent
with previous predictions for the critical point. If anything,
our scaling collapses show weak drift to larger values of hc,
suggesting that the transition might occur even deeper in the
apparent MBL phase than our estimates above.

A clue as to why our results look so different from pre-
vious studies can be gleaned from the inset to Fig. 1(b).
For h = 3, 3.5 (which would conventionally be regarded as
critical and localized respectively), Nsub remains large for all
the system sizes we study. However, it decreases with system
size in a way that is accelerating at larger L. This pattern is
not consistent with the expected finite-size effects in the MBL
phase, which should scale as e−L/ξ , where ξ is the correlation
length, and should therefore flatten out at larger sizes. Rather,
these results support a scenario in which the system seems
localized on short scales, but then (beyond some critical scale
ξ ) realizes it is unstable. The scale ξ diverges as h is increased
toward hc and can be regarded as a correlation length.

Discussion.— In this work we studied the properties of
LIOMs across the QP MBL transition, constructing them as
time-averaged local operators. In the thermal phase, these
time-averaged operators are just projectors onto global con-
served quantities like the total energy and charge; once these
hydrodynamic parts are subtracted out, the remainder of the
operator vanishes rapidly. In the MBL phase, instead, a time-
averaged local operator retains a finite norm, since it has
nonhydrodynamic projections onto the LIOMs. There is a
transition at which these LIOMs cease to exist and the norm of
the subtracted time-averaged operator vanishes. This apparent
transition has a critical point and critical exponents that are in-
consistent with the apparent transition in observables such as
eigenstate entanglement and nearest-neighbor-level statistics.
Notably, the apparent correlation-length exponent ν ∈ (2, 2.5)
that we extract from the finite-size scaling of the LIOMs is
much larger than the Luck bound ν � 1 (whereas previous
results had ν = 1, saturating the Luck bound). Indeed, we
should emphasize that the results we have presented do not
constitute strong evidence for the existence of an MBL phase
at all and are in principle consistent with a transition that
occurs at hc = ∞; however, the MBL phase is perturbatively
stable for sufficiently large h, and no nonperturbative instabil-
ities have yet been identified, so we take the point of view
that there is a transition in the window where we see one.
A counterintuitive implication of our results is that if ν � 2,
the QP-MBL critical point is perturbatively stable against
weak randomness by the Harris criterion [89]. (We note that
a similar result was found using a real-space RG scheme in
Ref. [68]). This could suggest either that there is a critical
value of randomness required to change the universality class
of the QP-MBL transition or that both the QP-MBL critical
point and some part of the QP-MBL phase undergo a nonper-
turbative instability for infinitesimal randomness.

How can we reconcile our observations with the results on
level statistics and entanglement? One possibility is that there
are two separate transitions with distinct critical properties,
one at which the level statistics changes its character and
another at which LIOMs cease to exist. This could happen,
for example, if there were an intermediate phase with a many-
body mobility edge [90,91]. However, it is unclear whether
such many-body mobility edges can exist [91] and, even if
they do, the transition in entanglement should occur once the
entire spectrum is localized. Thus it is not clear how this sce-
nario could apply to our case. A second possibility is that the
LIOMs we study here have weaker finite-size effects than the
level statistics because they are less affected by state-to-state
fluctuations that are large in finite systems [66]. (All known
finite-size effects favor the MBL phase, so a higher hc value is
more plausible, assuming there is a single transition).

Our results shed light on the nature of this transition at
which LIOMs cease to exist, which we tentatively identify
with the MBL transition. In particular, we find that LIOMs
even slightly on the MBL side are mostly fermion bilinears
with large norm; thus, they overlap strongly with microscopic
spins. The QP transition, like the random one, appears to be
an instability of the MBL phase that sets in at some critical
localization length as one increases the system size. In random
systems, such an instability is thought to be seeded by rare
regions that are locally thermal. Although rare regions do not
exist, strictly speaking, in QP systems, one might still expect
the instability to occur first in some parts of the sample. One
might expect LIOMs to be unusually delocalized in samples
that contain these parts. However, we do not see much evi-
dence of enhanced heterogeneity at the transition (Fig. 1). It
therefore seems that the instability we are seeing is due to
the proliferation of many-body resonances in typical regions
of the sample. The origin of these resonances remains to be
identified.

Our work, like all ED studies, is inherently limited
to small system sizes. An important question for future
work is whether one can construct LIOMs for much larger
systems. We attempted to do so by time-evolving local op-
erators via time-evolving block decimation (TEBD) applied
to matrix-product operators [79] and averaging over finite
time windows. Unfortunately, to get a good approximation
to the LIOMs away from the deeply localized limit, one
must average over such long time windows (comparable to
the Heisenberg time) that TEBD is impractical [79], be-
cause the bond dimension needed to describe the operator
grows intractably large. Whether other forms of explicit time-
averaging, e.g., based on Krylov-space methods [61,92], can
provide access to larger systems and sufficiently long times is
an interesting question for future work.
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