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Optically induced topological spin-valley Hall effect for exciton polaritons
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We consider exciton-polaritons in a honeycomb lattice of micropillars subjected to circularly polarized (σ±)
incoherent pumps, which are arranged to form two domains in the lattice. We predict that the nonlinear
interaction between the polaritons and the reservoir excitons gives rise to the topological valley Hall effect
where in each valley two counterpropagating helical edge modes appear. Under a resonant pump, σ± polaritons
propagate in different directions without being reflected around bends. The polaritons propagating along the
interface have extremely high effective lifetimes and show fair robustness against disorder. This paves the way
for robust exciton-polariton spin separating and transporting channels in which polaritons attain and maintain
high degrees of spin polarization, even in the presence of spin relaxation.
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Introduction. Reducing unwanted feedback is one of the
key requirements in optical information processing [1]. How-
ever, when a propagating signal experiences a bend in its path,
a significant amount gets reflected. Topological insulators,
which are commonly characterized by gapped bulk modes and
robust edge modes within the bulk band gap [2], are often
thought of as the potential candidate for transferring signals
[3–8].

First-order as well as higher-order topological insulators
have been an intense area of research in different fields,
such as photonics [9–13], acoustics [14,15], optical lattices
[16–18], etc. The system of exciton-polaritons, where mi-
crocavity photons acquire electronic nonlinearity because of
the hybridization with the quantum well excitons is an ex-
cellent platform to study topological phases both in linear
[19–23] and in nonlinear [24–31] regimes. The significant
nonlinearity of exciton-polaritons has made way for different
components of an optical information processing device, such
as low-energy polariton switches [32–34], transistors [34–37],
amplifiers [38,39], memories [40,41], routers [42,43], etc.
The main motivation in realizing the topological phases is to
obtain robust propagation of polaritons which serves to trans-
fer information between the different information processing
components [44].

The polariton Chern insulator, originally proposed in
Refs. [19–21], is based on the time-reversal symmetry break-
ing under an applied magnetic field and the transverse
electric-transverse magnetic (TE-TM) splitting of the pho-
tonic modes and was realized experimentally in Ref. [23].
Several other theoretical proposals for realizing topological
polaritons followed related to the same scheme [45–54], by
using the polarization splitting inside the elliptical micropil-
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lars [55], by using vortices in staggered honeycomb lattices
[56], and by Floquet engineering [57]. Apart from the linear
effects, the nonlinearity of polaritons alone can induce topo-
logical phases, such as the appearance of the Haldane model
[58,59] and antichiral edge states [60]. The non-Hermiticity
of the polaritons was used to realize topological phases in
one-dimensional micropillar chains [61–63]. Even after such
advancement of topological polaritonics, the analog of the
topological spin Hall effect [64] where different spins prop-
agate in opposite directions, has not been demonstrated yet.
This is because the common schemes for creating topological
polaritons rely on the TE-TM splitting, which is a form of spin
relaxation that mixes the two polariton spins corresponding to
right and left circular polarizations (denoted σ±). Moreover,
the topological band gap in such cases is proportional to the
TE-TM splitting, which is itself limited.

There has been a growing interest in realizing topological
phases under the effect of an optical pump [5,65]. Following
a similar route, we consider a honeycomb lattice of circular
micropillars where each micropillar is subjected to a circularly
polarized incoherent pump [see Fig. 1(a)]. The incoherent
pumps form two domains in the lattice where in one domain
all the A (B) sublattice sites are subjected to σ+ (σ−) pumping
and vice versa for the other domain. In Fig. 1(b), a schematic
of two domains is shown.

We note that lattices of incoherent pump spots are achiev-
able with spatial light modulation techniques [66–69]. In
principle a polarizing beam splitter could be used to separate a
source laser beam into two oppositely polarized components,
which could be modulated differently before being recom-
bined into the required interlocking pattern. Furthermore, in
the case of straight interfaces between domains, one polariza-
tion corresponds to a reflected and slightly displaced copy of
the other, which would allow the polarizing beam splitter to
be applied after the spatial light modulator.

The nonlinear interaction between the polaritons and the
reservoir excitons induces valley protected helical edge states
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FIG. 1. Scheme: (a) Circular micropillars arranged in a honey-
comb lattice. The two components of the incoherent pump (σ±) are
shown in red and green. (b) An example of two domains that form an
interface with a sharp bend. Polaritons with σ± spins can propagate
in opposite directions along the interface without being reflected.

at the interface, which is otherwise a topologically trivial sys-
tem with no band gap. This is related to the topological valley
Hall effect [70,71], an analog of the electronic valley based
two-dimensional materials [72]. Unlike previously studied
topological polaritons, here the topology is independent of the
TE-TM splitting, which makes the edge modes perfectly spin
polarized (in the limit of no TE-TM splitting), and the gain
due to the incoherent pump ensures a high effective lifetime
(around 200 ps) for the edge modes, or even their condensa-
tion (above a threshold). Using full numerical simulations we
show that the σ± polaritons propagate in opposite directions
without being reflected even in the presence of a sharp bend.
This effect is used to realize robust polariton spin channels
where polaritons choose to propagate along a particular chan-
nel depending upon their spins. The advantage of the system
over topologically trivial polaritonic systems is also evaluated
explicitly.

The model. The polaritons in the micropillars can be de-
scribed by the following driven-dissipative Gross-Pitaevskii

equation,

ih̄
∂ψσ±

∂t
=

[
− h̄2∇2

2m
+ V (x, y) − ih̄

γ

2

]
ψσ± + g̃rnσ∓ψσ±

+
(

gr + ih̄
R

2

)
nσ±ψσ± + Fσ± (x, y)ei(kpx−ωpt ), (1)

∂nσ±

∂t
= −(γr + R|ψσ±|2)nσ± + J (nσ∓ − nσ± )

+Pσ± (x, y). (2)

Here ψσ± are the wave functions of the polaritons correspond-
ing to the σ± spins and nσ± represent the densities of excitons
with σ± spins in the reservoir. The first term represents the
parabolic dispersion of the bare polaritons having mass m,
which is true near the bottom of the lower polariton branch.
V is the potential representing the honeycomb lattice of the
micropillars, and γ is the linear decay rate of the polaritons.
gr (g̃r ) is the nonlinear interaction of the polaritons with the
reservoir excitons having same (opposite) spin, and R is the
condensation rate of the polaritons. γr is the decay rate of
the excitons from the reservoir. Pσ± represents the incoherent
pumps (with σ± components), which we consider first with
a strength fixed below the condensation threshold. Fσ± are
the two spin components of a resonant pump which serves
to create polaritons with frequency ωp and wave-vector kp.
The coefficient J represents the spin relaxation of the reservoir
[73]. The terms involving g̃r and J are not necessary for our
desired effect but are included to be realistic.

We first calculate the linear band structure of the sys-
tem without the pump and decay by setting Pσ± = Fσ± =
γ = γr = 0. For calculating the band structure, the lattice is
considered periodic along the x axis with periodicity a and
finite along the y axis [see Fig. 2(a)]. We choose pillars with
diameter 2.5 μm, potential depth 6.5 meV, a = 4 μm, and
m = 3 × 10−5me, where me is the free-electron mass. The

FIG. 2. (a) and (c) Honeycomb lattice of micropillars (periodic along the x direction and finite along the y direction) without and with
the incoherent pumps, respectively. (b) and (d) Real part of the band structures of the systems represented in (a) and (c), respectively. The
bulk modes are represented in gray. In (b), blue represents topologically trivial modes located at the edges of the sample. In (d), red (green)
represent σ+ (σ−) polarized topological edge states, which are located at the interface. (e) Numerically calculated Berry curvature in the first
Brillouin zone for σ+ polaritons. The Berry curvature for σ− polaritons is the same as σ+ but with the domains interchanged. b = √

3a is
the periodicity along the y direction. Reservoir parameters used in (c)–(e): gr = 10 μeV μm2, g̃r = −0.4gr, R = 3 × 10−4 ps−1 μm2, γr =
1.5γ , J = 0.09 ps−1, and the peak value of the incoherent pump Ppeak

σ± = 10.7 ps−1 μm−2.
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band structure for this case is shown in Fig. 2(b), which is
similar to that of a graphene strip with zigzag edges where
the bulk bands (shown in gray) touch at the Dirac points and
trivial edge states (shown in blue) with almost zero group
velocity appear.

Next, we consider the micropillars subjected to the incoher-
ent pumps (Pσ± �= 0, γ �= 0, γr �= 0, but Fσ± = 0) such that
an interface is formed [see Fig. 2(c)]. The incoherent pumps
create excitons in the reservoir, which interact repulsively
with the polaritons and induce a local blueshift. For exam-
ple, in Fig. 2(c) σ+(σ−) polaritons will be blueshifted in the
sites shown in red (green). This interaction induced blueshift
breaks the inversion symmetry, and the bulk bands become
gapped. A lattice without any interface (meaning domain 1 or
domain 2 alone) corresponds to a topologically trivial system
with gapped bulk but no edge modes within the band gap [74].
Although, the band structure of both the domains are exactly
the same (domain 1 can be transformed into domain 2 by a
180◦ rotation and vice versa), they are topologically distinct.
To show this, we calculate the valley projected Chern number
for both domains,

CK = 1

2π i

∫
d2k F (k), (3)

where k = (kx, ky), F (k) = ( ∂Ay (k)
∂kx

− ∂Ax (k)
∂ky

) represents the
Berry curvature, A(k) = 〈u(k)|∇k|u(k)〉 is the Berry con-
nection, and u(k) is the Bloch mode. Instead of the whole
Brillouin zone, the integral in Eq. (3) is defined around the
K or K ′ valley. In Fig. 2(e), the numerically calculated Berry
curvatures [74] corresponding to the lowest band for σ+ po-
laritons in both domains are shown. It shows that the Berry
curvatures near the K or K ′ points are opposite in the two
domains. The valley projected Chern number turns out to be
CK (K ′ ) = ±1/2 in domain 1 and CK (K ′ ) = ∓1/2 in domain 2.
It is easy to see that the difference in valley-projected Chern
numbers in the two domains is �CK (K ′ ) = ±1. The topolog-
ical bulk-boundary correspondence principle [85] guarantees
the appearance of one edge mode at each valley located at
the interface of the two domains and the opposite sign of
�C at the two valleys also indicates their counterpropagat-
ing behavior. From the symmetry we can argue that σ+ at
domain 1 and σ− at domain 2 are topologically equivalent,
which suggests that the Berry curvature of the σ− polaritons
is the same as σ+, but with the domains interchanged. This
results in �CK (K ′ ) = ∓1, implying that the σ− edge modes
will have opposite group velocity to those of the σ+ edge
modes. It should be noted that the total Chern number of the
system over the whole Brillouin zone is 0. This is why no
topological edge mode appears if only one type of domain
is considered, and it is necessary to form an interface between
regions with opposite valley Chern numbers in order to realize
the topological edge modes.

We choose the incoherent pumps and reservoir parameters
such that the spin-dependent blueshift is around 1.5 meV and
the degree of circular polarization of the excitonic reservoir
is around 17% [86]. We take g̃r = −0.4gr as it is well es-
tablished that interactions between excitons of opposite spins
are attractive in typical cavity polariton systems [77]. Taking
the reservoir into account, the real part of the band structure
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FIG. 3. (a) and (b) Arrangement of Pσ± in red and green, re-
spectively. (c) Dynamics of the polaritons under a linearly polarized
continuous resonant pump for Pσ± = 0. No propagation is observed.
The propagations of σ+ and σ− polaritons are shown in (d) and
(e), respectively, under the same continuous resonant pump as in
(c) for Pσ± �= 0. (f) Degree of circular polarization including the
TE-TM splitting. The black arrow indicates the position of the
continuous resonant pump of width 5 μm, and the dashed line in-
dicates the interface. Parameters: peak value of the resonant pump
F peak

σ± = 0.01 meV μm−1, ωp = 2.65 meV/h̄, and kp = 2π/3a. TE-
TM splitting �T = 50 μeV and kT = 2.05 μm−1 in (f). Ppeak

σ± =
7.5 ps−1 μm−2 for the sites subjected to both Pσ± . All other parame-
ters are kept the same as those in Fig. 2.

of the system is presented in Fig. 2(d). Indeed at each valley
counterpropagating σ± edge modes appear. The band struc-
ture calculated for the steady state of the reservoir shows a
topological band gap around 0.3 meV [74]. Being a dynamic
system, upon switch on of the incoherent pumping it takes
time for the exciton reservoir to build up. The consequence is
that the initially trivial system undergoes a topological phase
transition in time (this process is illustrated in Supplemental
movie 1 in the Supplemental Material Ref. [74]).

Demonstration of robust polariton transport. Here we con-
sider a honeycomb lattice of micropillars with 40 and 11 unit
cells along the x and y directions, respectively. The arrange-
ment of the σ± incoherent pumps are shown in Figs. 3(a) and
3(b), respectively, which forms an interface with sharp bends.
We use a Gaussian-shaped linearly polarized continuous res-
onant pump to inject polaritons in the system. Figure 3(c)
shows the topologically trivial case corresponding to Pσ± = 0.
Understandably, no propagation of the the polaritons from
the excitation spot is observed. Next, the topological case
for Pσ± �= 0 is considered. In Figs. 3(d) and 3(e) the density
of the σ± polaritons at t = 75 ps are shown, respectively.
As expected, σ± polaritons propagate in opposite directions
along the interface with group velocity around 1.9 μm/ps.
The polaritons do not get reflected when propagating around
the bend. Since polaritons with linear polarization get split in
space depending upon their spin, this effect can be thought
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FIG. 4. (a) Schematic of the polariton spin channels where polaritons choose to propagate along the upper arm or the lower one depending
upon its spin. (b) and (c) Arrangement of the incoherent pumps. (d) and (e) Demonstration of the polariton propagation along the arms
depending upon its spin under a linearly polarized resonant pump. The black arrows indicate the positions of the continuous resonant pump of
width 5 μm. Ppeak

σ± = 7.5 ps−1 μm−2, which is below the condensation threshold. (f) and (g) Polariton condensates corresponding to σ± spins,
respectively, for Fσ± = 0 and Ppeak

σ± = 10.5 ps−1 μm−2. α1 = 1 μeV μm2, α2 = −0.4α1. All other parameters are kept the same as those in
Fig. 3(f).

of as an analog of the topological spin Hall effect [64]. In
general, the propagation of the polaritons is always limited
by their short finite lifetime. In this scheme, the incoherent
pump ensures a very high effective lifetime of the polaritons
(around 200 ps, which is about six times larger than the av-
erage polariton lifetime considered) [74]. Although we have
used a resonant pump to inject polaritons, the same can be
performed by setting the strength of the incoherent pumps
Pσ± above the condensation threshold. In that case, the system
spontaneously chooses to condense at the edge modes [74],
similar to the topological insulator lasers.

Unlike the common schemes for creating topological po-
laritons, here the topological behavior does not depend upon
the TE-TM splitting. This allows us to neglect the TE-TM
splitting, which is, in principle, possible by matching the
center of the stop band and resonant frequency of the cavity
[90] (which is also the condition sought for the highest quality
factor cavities). Nevertheless, to show that the proposed effect
is unhampered even in the presence of the realistic values
of the TE-TM splitting, we add a term �T

k2
T

(i ∂
∂x ± ∂

∂y )
2
ψσ∓

on the right-hand side of Eq. (1). The value of the TE-TM
splitting �T = 50 μeV at the wave-vector kT = 2.05 μm−1

is taken from Ref. [91]. Due to the presence of �T , ψσ±
is no longer the eigenstate of the system. Consequently, we
define the degree of circular polarization as Sz = (|ψσ+|2 −
|ψσ−|2)/(|ψσ+|2 + |ψσ−|2), which is plotted in Fig. 3(f). The
robust propagation of the spins in the opposite directions is
unaffected (see the Supplemental Material Ref. [74], movie
2), although rather than reaching ±1, the degree of circular
polarization is limited to ±0.85.

Polariton spin channels. Here we show that rearrangement
of the incoherent pumps leads to the realization of polariton
spin channels, where σ+ polaritons propagate along the up-
per arm and σ− polaritons propagate along the lower one.
In Fig. 4(a), a schematic of such a system is presented. We
solve Eqs. (1) and (2) in presence of the TE-TM splitting and
polariton-polariton interactions (see the Supplemental Mate-
rial Ref. [74], Eqs. (S15) and (S16)) corresponding to the
incoherent pump arrangement shown in Figs. 4(b) and 4(c).

The system works as spin channels under a linearly polarized
continuous resonant excitation [see Figs. 4(d) and 4(e)] as
well as for an incoherent excitation above the condensation
threshold where the condensate forms at the topological edge
mode [see Figs. 4(f) and 4(g)]. It can also be noted that the
topologically trivial channels show no separation of spins. In
principle, one could rely on the optical spin Hall effect [92]
to separate spins in channels [93], however, this results in
multiple oscillations of the spin.

Discussion and conclusion. In conventional photonic topo-
logical systems where topology is induced by (effective)
magnetic field (or complex hopping), the topological protec-
tion is at the edges of the physical sample, whereas the bulk
of the sample remains completely unused. This limits the
compactness of the device. However, in our scheme this is not
the case; as the topology is induced optically, more than one
topologically protected reconfigurable interface states can be
induced throughout the lattice area. In this way, information
can be transferred throughout the lattice area of the sample
instead of the edges only, making it more compact.

We have presented a scheme to obtain counterpropagating
transport of σ± polaritons, an analog of the topological spin
Hall effect. In the considered system, the nonlinear inter-
action of the polaritons and reservoir excitons gives rise to
topologically protected helical edge modes at each valley of
the honeycomb lattice, which can propagate around a sharp
bend without being reflected. The topological behavior be-
ing independent of the TE-TM splitting restricts the mixing
of two circular polarizations, which helps to obtain almost
pure σ± spin propagation even after consideration of realistic
value of TE-TM splitting. The presence of the incoherent
pumps also ensures a very high effective lifetime of the
propagating polaritons. Given its topological nature and fair
robustness against disorder of the Supplemental Material [74],
this system can be extremely useful in connecting spin-based
polariton devices [94–96] as well as recently realized polari-
ton neural networks [97–99].
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