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We demonstrate the realization of the resonant spin amplification (RSA) effect in Faraday geometry where
a magnetic field is applied parallel to the optically induced spin polarization so that no RSA is expected.
However, model considerations predict that it can be realized for a central spin interacting with a fluctuating
spin environment. As a demonstrator, we choose an ensemble of singly-charged (In,Ga)As/GaAs quantum
dots, where the resident electron spins interact with the surrounding nuclear spins. The observation of RSA
in Faraday geometry requires intense pump pulses with a high repetition rate and can be enhanced by means
of the spin-inertia effect. Potentially, it provides the most direct and reliable tool to measure the longitudinal
g factor of the charge carriers.
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The possibility of using the spin degree of freedom for
quantum information [1,2] continues to drive research on
semiconductor nanostructures [3–6]. The main characteristic
in this field is defined by the lifetime of the information or
the spin coherence time. Complementarily, the development
of spintronics [7] over two decades gave birth to a plethora of
experimental tools for the investigation of the spin dynamics
in semiconductor nanostructures. A major part of these meth-
ods is based on the interrelation between the spin of a charge
carrier and the polarization of a photon emitted or absorbed
by the semiconductor structure [8]. The most popular ones
are the Hanle effect [9] and the time-resolved pump-probe
technique, based on the pulsed-laser excitation [10–12], which
can be extended to detect the spin dynamics on arbitrary long
timescales with femtosecond resolution [13]. Other powerful
tools are the spin-noise spectroscopy [14,15] and the spin-
inertia technique [16–19].

One of the most basic parameters of the spin dynamics
is the g factor, which is often anisotropic in semiconductor
nanostructures. Its transverse component can be measured
very precisely when a magnetic field is applied in Voigt ge-
ometry by means of the resonant spin amplification (RSA)
effect [20]. It is based on the pump-probe technique, where
the spin polarization is measured at a fixed pump-probe delay
as a function of a transverse magnetic field. Provided the spin
relaxation time is longer than the laser repetition period, the
spin polarization is amplified when the Larmor precession
period is a multiple integer of the laser repetition period [10].
The RSA effect can also be used to evaluate the spin relaxation
time, the spread of the transverse g factor, and the strength
of the hyperfine interaction [21]. The RSA method has been
successfully applied to a variety of systems, ranging from
bulk GaAs [20], III-V and II-VI quantum wells and epilayers
[22–24], to quantum dots [25,26].

In Faraday geometry where the magnetic field is parallel
to the optical axis, there is no spin precession of the charge
carriers on average such that it is difficult to determine their
g factor. Up to now, it must be measured indirectly: First,
the transverse g factor is determined in Voigt geometry, e.g.,
by standard RSA [20] or from time-resolved measurement
of quantum beats [27–29]. Repeating the measurements in
an oblique geometry (e.g., tilted by 45◦) gives access to
the longitudinal g factor [23,27]. In this Letter, we propose
a RSA-based method to measure the longitudinal g factor
directly and with high accuracy. More precisely, we demon-
strate that RSA can emerge in Faraday geometry for an
ensemble of n-doped (In,Ga)As/GaAs quantum dots (QDs).
The effect is enabled by the hyperfine interaction between
the resident electron spins and the fluctuating nuclear spin
environment [19].

Experimental details. The studied sample consists of 20
layers of (In,Ga)As QDs separated by 70-nm barriers of GaAs
and grown by molecular beam epitaxy on a (100)-oriented
GaAs substrate. A δ-doping layer of silicon 16 nm above each
QD layer provides a single electron per QD on average. Rapid
thermal annealing at 880 ◦C for 30 s homogenizes the QD
size distribution and shifts the average emission energy to
1.3662 eV. The QD density per layer amounts to 1010 cm−2.

The sample is cooled to 5.3 K in a Helium gas atmosphere
inside a cryostat with a split-coil magnet. A superconducting
solenoid pair creates an external magnetic field Bextez in the
direction of light incidence, i.e., along the optical z axis with
an accuracy of 2 degree (Faraday geometry). The sample is
illuminated by laser pulses with a central optical energy of
1.3655 eV and a full width at half maximum of 1.3 meV. The
pulses have a duration of 2 ps and are emitted with a repetition
frequency of 1 GHz. They are split in pump and probe pulses,
which are degenerate in photon energy and shifted by 0.7 meV
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FIG. 1. (a) Photoluminescence of the QD ensemble (gray) at
T = 5.3 K along with the spectrum of the laser used in the pump-
probe measurements (orange). The sketch shows an n-doped QD
containing an electron spin (blue) with a g factor, which is interacting
with the fluctuating nuclear spin environment characterized by the
frequency ωN (red). (b) Faraday ellipticity amplitude as a function of
the pump modulation frequency fm for a pump power of Ppu = 7 mW
measured at a magnetic field of Bext = 400 mT with a pump-probe
delay of −60 ps (blue circles). The black line is the two-component
fit, see main text. The contributions of each component are shown
by the solid-orange and dashed-green lines. The inset shows the
power dependence of the two corresponding inverse effective spin
lifetimes 1/τ ∗

s . A linear extrapolation to zero power (black lines)
yields τs = (22 ± 1) μs (orange) and τs = (250 ± 27) μs (green).

to the low-energy flank of the QD photoluminescence, see
Fig. 1(a). The pump pulses are directed along a variable me-
chanical delay line. A double-modulation scheme reduces the
noise arising from separate detection of the scattered pump
and probe light. The helicity of the pump is modulated by
an electro-optical modulator at a frequency fm between left-
and right-handed circular polarization ranging from 0.1 to
104 kHz, preventing the build-up of significant dynamic nu-
clear polarization [30]. The linearly polarized probe beam
is intensity modulated using a photoelastic modulator at a
frequency of 100 kHz in series with a Glan prism. For signal
detection, the reference frequency of the lock-in amplifier is
running at the difference frequency. The pump and the probe
beams are focused on the same sample spot, with the pump
focused to a spot diameter of 50 μm and the probe to a diame-
ter of 45 μm. We measure the Faraday ellipticity amplitude of
the probe pulses using an optical polarization bridge, which
consists of a lambda-quarter plate, a Wollaston prism, and a
balanced photodetector. The Faraday ellipticity is proportional
to the electron spin polarization of the QDs along the optical
axis [31].

Results. Each circularly polarized pump pulse partially
orients the spins of the resident electrons along the optical
axis [32]. The spin polarization added by each pulse in this
way depends on its effective pulse area � [28], which is
determined by the average pump beam power and scales
like Ppu ∝ �2 when the power is small [31]. If the added
spin polarization exceeds the relaxed polarization along the
optical axis until the next pulse, the spin polarization builds
up. This is the case for a magnetic field of Bext = 400 mT
using a pump power of Ppu = 7 mW, and the origin for the
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FIG. 2. PRCs for different pump powers given next to the curves
at a pump modulation frequency of fm = 10 kHz. The colored data
is the experimentally measured Faraday ellipticity, the smooth black
curves are the simulated PRCs. The pulse area in the simulations
[34] is chosen to fit the experimentally obtained power dependence
of the Faraday ellipticity at large magnetic field. The positions of the
small peaks visible in the PRCs for larger pump powers match the kth
RSA mode (vertical grey lines) as predicted by the PSC (1), yielding
gz = −0.69 ± 0.01 for the longitudinal electronic g factor.

spin polarization in Fig. 1(b) displayed by the Faraday ellip-
ticity at −60 ps time delay between pump and probe pulses
studied as a function of the pump modulation frequency fm.
The decay of the ellipticity upon increasing fm stems from
the spin-inertia effect [16–19]. It can be described by the
dependence E ( fm ) = E0/

√
1 + (2π fmτ ∗

s )2, where τ ∗
s is the

effective spin lifetime at the corresponding pump power. The
extrapolation of τ ∗

s to zero power allows for extracting the
intrinsic spin relaxation τs of the electrons [16,19]. The inset
in Fig. 1(b) depicts the extracted times for two components
present in the spin-inertia dependence shown as solid-red and
dashed-green curves. We relate them to two effective subsets
of electrons in the QD ensemble and focus on the regime
fm � 5 kHz for which only the shorter living subensemble
with τs = (22 ± 1) μs contributes significantly [33].

Without a magnetic field, the spin polarization of the
electrons decays due to the hyperfine interaction with the nu-
clear spin fluctuations [35]. The application of a longitudinal
magnetic field suppresses the nuclei-induced spin relaxation
and in turn increases the spin polarization [36]. This effect
is referred to as polarization recovery. For the n-doped QD
sample studied in this work, the polarization recovery curves
(PRCs) have the typical V-like shape (symmetric around zero
field) [17–19,36,37]. Figure 2 shows the PRCs for a wide
range of pump powers. For small powers, the electron spin
polarization is minimal at 0 mT and rises to a saturation
level within 100 mT. For zero field, the electron spin is only
subject to the isotropic nuclear fluctuation field characterized
by the frequency ωN/(2π ) = 140 MHz [38] (equivalent to a
field of 14.5 mT), which is the characteristic frequency of the
electronic Larmor precession in the nuclear fluctuation field
(Overhauser field) leading to nuclei-induced spin relaxation;
see the sketch in Fig. 1(a). Upon increase of the longitudinal
magnetic field, the role of the Overhauser field is reduced
due to the increase of the electronic Zeeman splitting. In a
classical picture, the amplitude of the electron spin precession
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about the resulting effective magnetic field (superposition of
Overhauser and external field; see the sketch in Fig. 3) is
reduced the more the larger the external field. Hence, the
lifetime of the spin polarization and therefore the polarization
itself increases until saturation is reached [39].

For larger pump powers, the spin polarization increases
and the qualitative dependence on the magnetic field is very
similar. But strong pulses suppress the in-plane electron
spin components, effectively accelerating the spin relaxation,
which in turn leads to a broadening of the zero-field minimum
in the PRC [19,36]. Clearly, this is the case in Fig. 2: The
larger the pump power, the larger the required magnetic field
to reach saturation.

The appearance of a modulation in the Faraday ellipticity
at certain values of the longitudinal magnetic field in the
case of large pump powers is most striking. This is the result
of RSA in Faraday geometry enabled by nuclear fluctuation
fields [19]. As demonstrated in Fig. 2, the modulations appear
at magnetic fields Bext which fulfill the phase synchronization
condition (PSC)

�L = |k|ωR, k ∈ Z, (1)

for the Larmor frequency �L = μB|gzBext|h̄−1 (μB is the
Bohr magneton and h̄ the reduced Planck constant). These
discrete resonance frequencies are given by multiples of the
laser repetition frequency ωR. We label them by the mode
number k. The longitudinal electronic g factor |gz| determines
the mode positions. While we cannot extract its sign from this
effect, we know that it is negative for similar (In,Ga)As/GaAs
QDs [29]. Taking all peak positions into account, we obtain
gz = −0.69 ± 0.01. For comparison, the transverse g factor of
the electrons in this sample amounts to g⊥ = −0.599 ± 0.001
[40].

The theoretical model is presented in the Supplemental
Material [34]. It almost perfectly describes the experiment as
shown by the black lines in Fig. 2. Noteworthy, in contrast
to Refs. [18,19,31], the model accounts for a lifetime of the
photoexcited trion which is comparable to the pulse repetition
period of 1 ns. The main deviation between experiment and
theory is found in the regime of very small magnetic fields.
This deviation has a narrow M-like shape, which is typical for
p-doped QD samples with a strong field dependent spin gener-
ation rate [17,18]. Hence, we attribute the deviation to resident
or photoexcited hole spins with weak hyperfine interaction.

In what follows, we describe how the nuclear fluctuation
fields in QDs enable us to implement RSA in Faraday geom-
etry. In a single QD, the localized electron spin S precesses in
an effective magnetic field being the sum of the external and
the Overhauser field with frequency �eff := |�L + �N|. The
Larmor frequency �L points along the external magnetic field.
But the Overhauser field �N, whose time evolution is much
slower than the pulse repetition rate [35], has a random direc-
tion, which tilts the effective field from the z axis due to its
transverse components. As illustrated by the sketch in Fig. 3,
this tilt leads to a precession motion, which becomes smaller
in amplitude for a larger magnetic field. This is the reason why
the higher RSA modes in Fig. 2 are less pronounced. Strong
pulses result in a strong generation of spin polarization while
also aligning the electron spin along the z axis, leading to RSA

FIG. 3. Visibility map for the RSA mode |k| = 1 in Faraday ge-
ometry modeled for detection by Faraday ellipticity. The pump-probe
delay is set to zero, the pump modulation frequency to fm = 10 kHz.
The white cross marks the experimental conditions for a pump
power of Ppu = 8.5 mW (� = 0.07π ) and a pulse repetition period of
TR = 1 ns [ωN/(2π ) = 140 MHz]. The sketch illustrates the mecha-
nism leading to RSA in an external longitudinal magnetic field �L

[19]. The transverse components of the Overhauser field �N tilt the
resulting effective magnetic field from the z axis, inducing a preces-
sion of the electron spin S about the effective field �eff = �L + �N

with frequency �eff .

whenever the PSC �eff = |k|ωR for a single QD is met. After
averaging over the Overhauser field distribution described by
Gaussian fluctuations with variance ω2

N/2 [35,41], the PSC (1)
follows in leading order for �L � ωN [19]. Corrections to the
resonance frequency are O(ω2

N/�2
L). For �L < ωN, the modes

appear shifted. We point out that this mechanism is expected
to work also for single QDs because the statistical fluctuations
of the Overhauser field in time can be described by the same
distribution as for the ensemble [35,41].

RSA in Faraday geometry should be detectable in a variety
of semiconductor nanostructures. But the ensemble average
smears out the RSA modes such that they cannot be observed
unless certain conditions are met. The prerequisites are: (i) an
efficient hyperfine coupling, (ii) strong pump pulses, and (iii)
a laser repetition frequency ωR which on the one hand, allows
for RSA modes that are separated enough not to overlap
significantly, but on the other hand fall into magnetic field
ranges where the spin polarization is not yet saturated [19].
The conditions (i) and (ii) are typically fulfilled for singly-
charged n-type (In,Ga)As/GaAs QDs [42]. For p-type QDs
with strongly anisotropic hyperfine interaction [43,44], the
effect is exptected to be much weaker [19]. The condition
(iii) is not trivial and potentially leads to a new regime of the
spin dynamics. An estimate for its realization is the condition
ωR �

√
2ωN known from standard RSA [26]. We imple-

mented a laser source with repetition rate ωR/(2π ) = 1 GHz
to reach this regime.

To provide a quantitative basis for the above, we study the
RSA visibility defined as [36]

V := Emax − Emin

Emax
, (2)

where Emax is the Faraday ellipticity of the first maximum
at the RSA mode |k| = 1 and Emin denotes the adjacent
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minimum for larger magnetic field |Bext|. In order to aver-
age out statistical fluctuations in both model and experiment,
we fit polynomials to the region around the |k| = 1 mode
to determine its visibility. A map of the RSA visibility in
dependence of the pulse area � (defined in the Supplemental
Material [34]) and of the product ωNTR (TR = 2π/ωR is the
pulse repetition period) is shown in Fig. 3. The visibility is
enhanced by an increase of the pulse area corresponding to
stronger pulses. For a too large or too small repetition period,
the visibility decreases. Observing RSA in Faraday geometry
is easiest in the intermediate regime ωNTR ∼ 1 − 2. The white
cross on the color map shows that the laser source used here
is operating at a too small power with a resulting visibility
of merely V ≈ 0.02 at a pump power of Ppu = 8.5 mW. Un-
der optimal conditions, the visibility could reach unity. For
the commonly used pulse repetition periods TR = 13.2 and
6.6 ns (ωNTR ≈ 10.6 and 5.8), no RSA modes are discernible
for our QD sample with ωN/(2π ) = 140 MHz because they
overlap.

The main obstacle for a larger visibility is the small pulse
area of the applied GHz pulses because a too large pump
power would heat the sample too much. Yet, we can study
the power dependence of the experimentally seen and theo-
retically modeled visibility in the accessible range. Clearly,
as demonstrated in Fig. 4(b) by experiment and theory, a
reduction of the pump power results in the disappearance of
the RSA modes displayed by a vanishing visibility.

Remarkably, the RSA visibility can be enhanced by
exploiting the spin-inertia effect. This is demonstrated in
Fig. 4(a) where PRCs for various pump modulation frequen-
cies fm are plotted using a pump power of Ppu = 8.5 mW. The
PRCs are normalized with respect to the Faraday ellipticity
at Bext = ±500 mT to highlight the enhanced visibility of the
RSA modes upon increasing fm. The deviation between ex-
periment (colored) and theory (black) for large fm is related to
the fact that the spin-inertia dependence for the QD sample is
not perfectly captured by the monoexponential spin relaxation
entering in our model. But generally, the spin-inertia effect
leads to a reduction of the average spin polarization upon
increasing the modulation frequency fm as shown earlier in
Fig. 1(b). The key idea is the following: The application of
a larger modulation frequency results in a decrease of the
average absolute spin polarization and in turn, each pump
pulse can better orient the spins along the optical axis because
a larger number is disordered. In a nutshell, the spin-inertia ef-
fect allows us to avoid the influence of spin saturation, which
is detrimental to RSA in Faraday geometry. Note also that
for the same reason, a larger modulation frequency narrows
the zero-field minimum of the PRCs as visible in Fig. 4(a)
[19].

To be more quantitative, we plot the extracted RSA visibil-
ity (2) as a function of fm in Fig. 4(c). Clearly, an increase of
the modulation frequency results in a significant increase of
the visibility V , in agreement with the theoretical prediction.
For instance, we find V = 0.08 ± 0.02 for the k = +1 mode
using fm = 40 kHz. The experimental limitation, especially
for the higher RSA modes |k|, is the deteriorated signal-to-
noise ratio in the PRCs for larger frequencies as noticeable
in Fig. 4(a). The signal-to-noise ratio can be improved by
averaging over longer time intervals for each data point.
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FIG. 4. (a) Normalized PRCs for various pump modulation
frequencies fm at a pump power of Ppu = 8.5 mW. Except for the nor-
malization with respect to the Faraday ellipticity at Bext = ±500 mT,
the layout of the plot is analogous to Fig. 2. Bottom row: RSA
visibility V as a function of the (b) pump power Ppu and (c) pump
modulation frequency fm for the first RSA mode |k| = 1. The exper-
imental data is plotted as blue squares (k = −1) and orange circles
(k = 1), the theoretical data in black. The error bars represent the
root-mean-square error of the polynomial fits around the respective
RSA mode.

Complementary results are provided in the Supplemental
Material [34], which demonstrate RSA in Faraday geometry
for another QD ensemble with a weaker nuclear fluctuation
field. There, we study the Faraday rotation instead of the
Faraday ellipticity, but we emphasize that the effect is easier
to detect by measuring the ellipticity.

The PSC (1) is also well known from the interrelated
effects “spin mode locking” and “nuclei-induced frequency
focusing” [26,31,45–59]. They occur in similar experimental
setups but with the magnetic field being applied in Voigt
geometry. Since RSA takes place on much shorter time scales
than the adaption of the Overhauser field responsible for
nuclei-induced frequency focusing, we expect that it plays no
role in our experiments. Yet, it is the subject of future research,
which requires the inclusion of the nuclear spin dynamics in
the model.

Conclusion. We demonstrated that the detrimental nuclear
spin fluctuations in QDs can be exploited for one’s own ad-
vantage: they enable RSA in Faraday geometry. The positions
of the RSA modes directly yield the longitudinal g factor of
the charge carriers, which we determine very precisely to be
gz = −0.69 ± 0.01 for the studied n-doped (In,Ga)As/GaAs
QDs. This method solves the long-standing problem of mea-
suring the longitudinal g factor of the charge carriers directly
in weak magnetic fields [60] and puts the characterization of
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the spin dynamics in a longitudinal magnetic field on equal
footing with the case of a transverse field. The theoretical
analysis paves the way to achieve a better visibility of the
effect: use of strong pump pulses combined with a suffi-
ciently high laser repetition rate. A significant enhancement
is achieved by exploiting the spin-inertia effect. We believe
that this technique will also be useful for the investigation of
other semiconductor nanostructures, e.g., quantum wells.
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