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Nonlinear Drude weight (NLDW) is a generalization of the linear Drude weight, which characterizes the
nonlinear transport in quantum many-body systems. We investigate these weights for the spin- 1

2 XXZ chain
in the critical regime. The effects of the Dzyaloshinskii-Moriya interaction and an external magnetic field are
also studied. Solving the Bethe equations numerically, we obtain these weights for very large system sizes and
identify parameter regimes where the weights diverge in the thermodynamic limit. These divergences appear
in all the orders studied in this Letter and can be regarded as a generic feature of the NLDWs. We study the
origin of these divergences and reveal that they result from nonanalytic finite-size corrections to the ground-state
energy. Furthermore, we compute closed-form expressions for several weights in the thermodynamic limit and
find excellent agreement with the numerical results.
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Introduction. Transport phenomena have been one of the
most important subjects in condensed matter and statistical
physics. The linear transport phenomena are well explained
by the famous linear response theory [1] and widely applied to
many experiments. On the other hand, the nonlinear responses
are less understood [2] and we still do not have a systematic
understanding of them. While the nonlinear responses have
been well studied in the field of nonlinear optics [3,4], they
are still an intriguing topic. For instance, rectification currents
[5,6] and high-harmonic generations [7,8] in solids are exper-
imentally observed and extensively studied recently. They are
used as new experimental probes and expected to be utilized
for future optical/electric devices. Stimulated by this situa-
tion, the theoretical investigation for nonlinear responses is
rapidly developing [9–15], but further studies are still desired.
In particular, the understanding of the nonlinear responses in
many-body interacting systems is still poor compared with the
noninteracting case [16–18].

Very recently, nonlinear Drude weights (NLDWs) charac-
terizing the nonlinear static transport have been introduced
[19,20]. This is an extension of the linear Drude weight which
was introduced by Kohn as an indicator to distinguish metals
and insulators in quantum many-body systems [21] and has
been extensively studied in various contexts related to trans-
port phenomena. In particular, the Drude weight is calculable
with the exact solutions of one-dimensional quantum many-
body systems and thus has been a principal quantity in the
studies of their transport phenomena at zero and finite tem-
perature [22]. As the linear one has played a very important
role, the NLDWs are also expected to provide useful informa-
tion about nonlinear transport even in interacting many-body

systems. However, most of the properties of NLDWs are still
unexplored. For example, Ref. [19] reported the divergent
behavior of the third-order Drude weight in the spin- 1

2 XXZ
chain. This is regarded as a feature of NLDWs not existing in
linear Drude weights, and calls for a more detailed analysis of
NLDWs, especially in interacting systems.

In this Letter, we study the NLDWs at zero temperature
in the spin- 1

2 XXZ chain, which is a prototypical many-body
interacting model [23]. The linear Drude weight of this model
has been extensively studied in quantum transport phenomena
[22,24–29]. The most important advantage of this model is
its solvability by the Bethe ansatz [30,31], which enables us
to treat very large system sizes. We also study the effect of
the Dzyaloshinskii-Moriya (DM) interaction with a uniform
DM vector along the z axis [32] and an external magnetic
field which are treatable within the Bethe ansatz technique. By
using the exact solutions, we calculate the first several orders
of the NLDWs numerically and find parameter regimes where
the weights diverge in the thermodynamic limit. While this
divergence never appears in the linear one, it appears in all the
NLDWs studied in this Letter. Thus, we consider that the di-
vergent behavior is one of the generic features of the NLDWs
in interacting systems. To clarify the origin of this divergence,
we analyze the finite-size corrections to the ground-state
energy of the model. The detailed analysis shows that the
divergence comes from a nonanalytic term proportional to
a noninteger power of 1/N (N : system size). We explicitly
identify the noninteger powers and confirm the expected di-
vergence by using our numerical results. Furthermore, we
derive closed-form expressions in the thermodynamic limit
for several NLDWs in the convergent region by using the
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Wiener-Hopf method [30,33–35]. The obtained results match
the numerical results with high accuracy.

Models. The spin- 1
2 XXZ chain with periodic boundary

conditions is defined by the Hamiltonian:

Ĥ(0)=
N∑

l=1

2J

[
Ŝx

l Ŝx
l+1 + Ŝy

l Ŝy
l+1 + �Ŝz

l Ŝz
l+1

]
, (1)

where Ŝα
l (α = x, y, z) are spin- 1

2 operators, J > 0 is the cou-
pling constant, � is the anisotropy parameter, and N is the
number of sites. We identify N + 1 with 1 and assume that
−1 < � < 1 and N is even throughout this Letter. Note that
this model is mapped to the interacting spinless fermion model
via the Jordan-Wigner transformation [30]. In this model, the
Hamiltonian with the U (1) flux � reads

Ĥ(�)=
N∑

l=1

2J

[
1

2
ei(�/N )Ŝ+

l Ŝ−
l+1+H.c.+�Ŝz

l Ŝz
l+1

]
, (2)

where Ŝ±
l = Ŝx

l ± iŜy
l . Here it is enough to consider only

−π < � � π , as H(�) and H(� + 2π ) have the same
spectrum. The � �= 0 case corresponds to the
spin-1/2 XXZ chain with the DM interaction [32,36].
When we consider the effect of an external magnetic field, we
add to the Hamiltonian the term −h

∑N
l=1 Ŝz

l where h is the
magnetic field.

Since the total magnetization Ŝz
tot = ∑N

l=1 Ŝz
l is conserved

even under the magnetic field, we can obtain the lowest energy
state in each sector individually by the Bethe ansatz [37].
In the sector with M down spins, the Bethe roots {v j (�)}
are determined by the following Bethe equation for j =
1, 2, . . . , M:

p1(v j (�)) + �

N
− 1

N

M∑
k=1

p2(v − vk (�))

= π

N
(−M + 2 j − 1), (3)

where pn(v) ≡ 2 tan−1
( tanh γ

2 v

tan nγ

2

)
and γ ≡ arccos �. Using the

Bethe roots, the energy density is given as

e(�, h; M ) = 1

N

M∑
j=1

2J sin2 γ

cos γ − cosh γ v j (�)

+ J�

2
− h

(
1

2
− M

N

)
. (4)

If h = 0 and � = 0, it is known that the ground state lies in
the sector of M = N/2 [38]. Thus, for sufficiently small � the
ground-state energy density of H(�) is egs(�) = e(�, h =
0; M = N/2) [39]. Under the magnetic field h, M is not nec-
essarily equal to N/2 and the ground-state energy density is
given as egs(�, h) = minM e(�, h; M ).

Nonlinear Drude weight. Let us introduce the NLDWs. We
follow the argument of Ref. [19]. We consider the application
of the time-dependent flux �(t ) ≡ Nφ(t ). This induces the
spin current density js(t ) = 〈ψ (t )|∂Ĥ(�)/∂�|ψ (t )〉. Here,
the state at time t is defined as |ψ (t )〉 = Û (t ) |ψ0〉 where
Û (t ) = T exp {−i

∫ t
0 Ĥ(�(s))ds} is the time-evolution oper-

ator and |ψ0〉 is the ground state of Ĥ(�(0)). Then, we define

the linear and nonlinear conductivities in real time as

js(t )− js(0)=
∞∑

n=1

1

n!

∫ t

0
dt1 · · ·

∫ t

0
dtn

× σ (n)(t − t1, . . . , t − tn)
n∏

l=1

(
−dφ(tl )

dtl

)
.

(5)

Since the response function σ (n)(t1, . . . , tn) vanishes
whenever tl < 0 for any l = 1, 2, . . . , n due to the causality,
the Fourier transform is given as σ (n)(ω1, . . . , ωn) =∫ ∞

0 dt1 · · · ∫ ∞
0 dtnσ (n)(t1, . . . , tn)

∏n
l=1 ei(ωl +i0)tl . The

nth-order Drude weights in a finite system D(n)
N are

defined by the most singular part of σ (n)(ω1, . . . , ωn) around
ω1, . . . , ωn = 0 and thus reads

σ
(n)
Drude(ω1, . . . , ωn) = D(n)

N

n∏
l=1

i

ωl + i0
, (6)

where the nth-order conductivity is decomposed as σ (n) =
σ

(n)
Drude + σ

(n)
regular [23]. At zero temperature, NLDWs D(n)

N can
be calculated as

D(n)
N (�) = Nn+1 ∂n+1

∂�n+1
egs(�)

∣∣∣
�=�

. (7)

This is the one-dimensional version of the nonlinear Kohn
formula derived in Refs. [19,20] which provide two different
derivations, respectively. The finite � corresponds to the DM
interaction as mentioned above. Under a finite magnetic field,
we define D(n)

N (�, h) with replacing egs(�) by egs(�, h) in
Eq. (7). Note that the spin current corresponds to the elec-
tric (particle) current when the spin chain is mapped to the
fermionic chain and thus the NLDWs defined above are re-
lated not only to the spin transport but also to more generic
transport properties in interacting many-body systems.

Numerical results. By numerically solving the Bethe
equations [Eq. (3)], we calculate the NLDWs D(n)

N (�). To cal-
culate them, we approximate the derivative in Eq. (7) by finite
differences.

First, we study the � = 0 case where only the odd orders
are nonvanishing. This is because the ground-state energy
density egs(�) is an even function of � [40]. It corresponds
to the fact that the even order nonlinear responses vanish in
inversion symmetric systems, which is well known in non-
linear optics [3,4]. The results for D(n)

N (0) (n = 1, 3, 5) are
shown in Figs. 1(a)–1(c). Figure 1(a) is consistent with the
previous work [24], and Fig. 1(b) is also consistent with the
recent numerical results for small system sizes [19]. The most
significant difference between the linear and nonlinear ones
is the existence of divergent regions. The third-order one
D(3)

N (0) and the fifth-order one D(5)
N (0) tend to diverge for

0.5 � � < 1 and 0 � � < 1, respectively. Note that D(5)
N (0)

crosses zero at � � −0.29 and changes its sign when passing
through the point as seen in Fig. 1(c). This is a unique feature
which does not appear in the lower orders and there might
arise some special properties at this point. We also note in
passing that a divergent behavior similar to that of D(3)

N (0)
was found for the fourth derivative of the ground-state energy
density with respect to the magnetization [41].
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FIG. 1. Numerical and analytical results for D(n)
N (0) (n = 1, 3, 5). All the vertical axes are scaled with J . NLDWs D(3)

N (�) and D(5)
N (�)

diverge in green regions, which are determined by 4γ /(π − γ ) < n − 1. The insets in (b) and (c) show r (n)(1/N ) [Eq. (11)] in the divergent
regions and confirm the divergence caused by noninteger powers of 1/N .

Next, we consider the � �= 0 case. As we mentioned, this
corresponds to the XXZ spin chain with finite DM interac-
tion which breaks the inversion symmetry. Thus, even order
responses are allowed. The results for D(n)

N (� �= 0) (n = 2, 4)
are shown in Figs. 2(a) and 2(b). As we expected, D(n)

N (� �= 0)
is nonzero in finite systems. We can see the convergence of
D(n)

N (� �= 0) (n = 2, 4) to 0 in a wide range of � in the
thermodynamic limit. The interesting point is that there also
exist the divergent regions, as seen in Figs. 1(b) and 1(c).
The second-order one D(2)

N (� �= 0) and the fourth-order one
D(4)

N (� �= 0) tend to diverge for 0.81 � � < 1 and 0.22 �
� < 1, respectively. Since the effect of the flux � is rewrit-
ten as a twisted boundary condition, the ground-state energy
density is expected to be independent of � in the thermody-
namic limit. Thus, it might seem that D(n)

N (� �= 0) is zero.
However, since the Drude weights are differential coefficients
before taking the thermodynamic limit, the divergence does
not contradict the above statement. This reflects that the ther-
modynamic limit and the differentiation with respect to � are
not interchangeable.

Finally, we study the effect of the magnetic field. The
results for D(3)

N=800(0, h) are shown in Fig. 2(c). For the �

around both −1 and 1, the values are suppressed. Some of the
values around � = −1 reach zero. It is natural because the
gapped regime comes into |�| < 1 under the magnetic field

[30]. The more nontrivial one is around � = 1. It seems that
the divergent behavior is suppressed by the magnetic field.
Indeed, the N dependence shown in the insets of Fig. 2(c)
confirms that the convergent region becomes wider under
the magnetic field. As we discuss later, this behavior can be
understood from the low-energy effective field theory. Note
that these properties are seen in other orders of NLDWs
as well [42].

Origin and properties of the divergence. As Figs. 1 and 2
imply, the NLDWs diverge in certain regions by taking the
thermodynamic limit. While the same behavior in the third-
order one was reported based on numerical diagonalization
[19], the origin remains unclear. Here, we show that these
behaviors are caused by the special terms included in the
power series expansion of egs(�). The finite-size corrections
to the ground-state energy of the XXZ spin chain have been
studied in great detail [43–48]. Previous studies revealed that
the corrections include both integer and noninteger powers
of 1/N , both of which can be accounted for by consider-
ing the low-energy effective field theory of the XXZ chain,
i.e., the c = 1 conformal field theory perturbed by irrele-
vant operators. Although the effect of the flux has not been
fully explored, it is natural to assume that the coefficient of
each correction term can be Taylor expanded around � = 0.
This, together with the fact that egs(�) is an even function

FIG. 2. Numerical and analytical results for D(n)
N (� = 0.1) (n = 2, 4) are shown in (a) and (b). Symbols are the same as in Fig. 1.

Numerical results for D(3)
N=800(0, h) are shown in (c). All the vertical axes are scaled with J . Green regions are the divergent regions of

NLDWs without a magnetic field, which are determined by 4γ /(π − γ ) < n − 1. The insets in (a) and (b) show r (n)(1/N ) [Eq. (12)] in the
divergent regions and confirm the divergence caused by noninteger powers of 1/N . The inset in (c) shows D(3)

N (0, h = 0.8)/D(3)
100(0, h = 0.8)

and confirms the convergence.
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of �, yields

egs(�) − egs(0) =
∑

k�l�1

Ak,l

(
1

N

)2k

�2l

+
∑

k,l,m�1

Bk,l,m

(
1

N

)2k+4m(γ /π−γ )

�2l , (8)

where Ak,l and Bk,l,m are coefficients depending on the pa-
rameter γ . Note that the coefficients A1,1, A2,2, and B1,l,1

can be read off from Eq. (4.1) in Ref. [48], and at the free-
fermion point (γ = π/2), all the coefficients can be easily
computed explicitly [19]. In the following, for simplicity, we
restrict ourselves to the case where γ is generic, i.e., none of
the exponents in the second sum are integers. The noninte-
ger exponent can be rewritten as 2k + 4mγ /(π − γ ) = 2k +
4m(2K − 1), where K = (π/2)/(π − γ ) is the Tomonaga-
Luttinger parameter of the model [34,49,50]. This reflects
that the nonanalytic finite-size corrections originate from ir-
relevant operators with noninteger scaling dimensions such
as 4K [45,46].

Any term �α/Nβ (α > β ) in Eq. (8) can contribute to
divergences of NLDWs. The straightforward calculation gives

D(2k−1)
N (�) = (2k)!

[
Ak,k + B1,k,1N2k−2−(4γ /π−γ ) + · · ·

]
,

(9)

D(2k)
N (�) = (2k + 2)!Ak+1,k+1

�

N

+ Ck (�)N2k−1−(4γ /π−γ ) + · · · , (10)

where Ck (�) ≡ ∑
l>k (2l )!/(2l − 2k − 1)!B1,l,1�

2l−2k−1.
The above expressions suggest that D(2k−1)

N (�) and D(2k)
N (�)

are likely to diverge when the exponent of the power of
N in each second term, which can be the leading term, is
positive: 2k > 2 + 4γ /(π − γ ) and 2k > 1 + 4γ /(π − γ ),
respectively [51]. This enabled us to determine the green
regions in Figs. 1 and 2.

Also, Eqs. (9) and (10) imply that D(n)
N (�) shows the

divergence caused by Nn−1−(4γ /π−γ ) in the divergent re-
gion. In order to confirm this, we define r (2k−1)(1/N ) and
r (2k)(1/N ) as

r (2k−1)(1/N ) = D(2k−1)
N (0)

(2k)!B1,k,1N2k−2−4γ /(π−γ )
, (11)

r (2k)(1/N ) = D(2k)
N (�)

Ck (�)N2k−1−4γ /(π−γ )
, (12)

and plot Eq. (11) [Eq. (12)] in the insets of Figs. 1(b) and
1(c) [Figs. 2(a) and 2(b)]. These figures clearly show that
each data is on a straight line to the value near 1 in the large
N region, indicating that the divergences are caused by the
noninteger power terms of N expected from the power series
expansion (8). We stress that the numerical confirmation of
these behaviors is quite challenging because it requires large
system sizes, which are beyond the reach of other numerical
methods such as exact diagonalization.

The suppression of the divergence under the magnetic field
around � = 1, shown in Fig. 2(c), is also explained by the ex-
pansion (8). In the absence of the magnetic field, the umklapp

scattering term with scaling dimension 4K = 2π/(π − γ ) is
responsible for the nonanalytic finite-size corrections. How-
ever, in the presence of the magnetic field, the Fermi wave
vectors become incommensurate with the lattice. As a result,
the umklapp term oscillates in space and should be dropped
in a renormalization group sense [34,49,52]. Therefore, the
effect of noninteger powers in Eq. (8) are expected to be small
under the magnetic field and thus the divergence is suppressed
as well.

Analytical form in the convergent region. By using the
expansion [Eq. (8)], we can derive closed-form expres-
sions for NLDWs in the thermodynamic limit. Taking the
limit in Eq. (8) in the convergent region, we obtain the
NLDWs D(2k) = 0 and D(2k−1) = (2k)!Ak,k where D(n) ≡
limN→∞ D(n)

N (�), and thus the problem is reduced to the cal-
culation of Ak,k . These coefficients can be calculated using
the Wiener-Hopf method, which is a mathematical technique
to solve the Wiener-Hopf integral equations [30,33–35] (see
Supplemental Material [36] for more details). As a result, the
first-order (linear) one is

D(1) = πJ sin γ

2γ (π − γ )
, (13)

for 0 < γ < π . This reproduces the previous result in Refs.
[24,25]. The third-order and fifth-order ones are given by

D(3) = − J sin γ

8γ (π − γ )

⎡
⎣ �

(
3π
2γ

)
�

(
π−γ

2γ

)3

�
( 3(π−γ )

2γ

)
�

(
π
2γ

)3 +
3π tan

(
π2

2γ

)
π − γ

⎤
⎦,

(14)

for π/3 < γ < π , and

D(5) = 3J sin γ

32πγ (π − γ )

⎡
⎣ �

(
5π
2γ

)
�

(
π−γ

2γ

)5

�
( 5(π−γ )

2γ

)
�

(
π
2γ

)5

− 5

3

�
(

3π
2γ

)2
�

(
π−γ

2γ

)6

�
( 3(π−γ )

2γ

)2
�

(
π
2γ

)6 +
15π2 tan2

(
π2

2γ

)
(π − γ )2

+
5π tan

(
π2

2γ

)
π − γ

�
(

3π
2γ

)
�

(
π−γ

2γ

)3

�
( 3(π−γ )

2γ

)
�

(
π
2γ

)3

⎤
⎦, (15)

for π/2 < γ < π , respectively. We note that the result of D(3)

can also be read off from A2,2 in Eq. (8) and is consistent with
the result of Ref. [19]. These are plotted in Fig. 1. Clearly,
the analytical results match the numerical results with high
accuracy.

Conclusion and outlook. In this study, we calculated the
zero-temperature NLDWs of the spin- 1

2 XXZ chain in the
critical regime numerically for large system sizes, considering
the effect of the DM interaction or the external magnetic field.
The numerical results (Figs. 1 and 2) revealed that all the
NLDWs diverge in certain � regions by taking the thermo-
dynamic limit. Thus, we considered these divergences are a
generic feature in interacting systems and investigated their
mechanism. Based on the power series expansion [Eq. (8)],
we identified the origin of the divergences as nonanalytic
finite-size corrections to the ground-state energy. This expan-
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sion also allows us to identify the regions and strength of the
divergences. We confirmed that they are in good agreement
with the numerical data. Furthermore by using the Wiener-
Hopf method, we obtained the closed forms of several weights
in the thermodynamic limit [Eqs. (13)–(15)]. In the conver-
gent regions, they matched the numerical results with high
accuracy as seen in Fig. 1. Although in this paper we calcu-
lated the analytical expressions for NLDWs by treating the
magnetization and the U (1) flux simultaneously (see Supple-
mental Material [36]), we expect that a direct calculation for
zero magnetization should be possible using another method
involving nonlinear integral equations [53]. A thorough anal-
ysis of NLDWs based on such a sophisticated method would
be an interesting future direction.

Our results are a first systematic calculation of the
NLDWs in interacting many-body systems for very large

system sizes. We found that the divergent behavior
generically appears and clarified the origin of the diver-
gence. We believe that our results will help in under-
standing the nonlinear transport in quantum many-body
systems.
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