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The elastic description of planar quasicrystals can be formulated as an interplay between two Goldstone fields
corresponding to phonon and phason degrees of freedom. We reformulate this description as a gauge theory with
one gauge field that is symmetric under an exchange of indices and one that is not. We also show that topological
defects in quasicrystals can be succinctly incorporated in the dual description and interpret them as fractonic
excitations. Finally, we calculate the static interaction potential between defects in a quasicrystal with fivefold
symmetry. This is done in the limit of a small coupling between phonon and phason stresses.
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Solid materials are most commonly represented by crys-
tals, whose atomic constituents are arranged in a highly
ordered microscopic structure, forming a lattice. The macro-
scopic description of crystals is provided by the theory of
elasticity that deals with the mechanics of bodies modeled as a
continuous object rather than a crystalline lattice of atoms [1].
An important point is, however, that not all solids are crystals.
In fact, there are various classes of solid materials, whose mi-
croscopic structure is not a periodic lattice. Examples include
polycrystals, glasses, and quasicrystals. We do not have such
a detailed understanding of these materials as for crystals.
Both microscopic structures and macroscopic descriptions are
active fields of study.

Topological defects play a key role in the physics of elastic
solids [2]. They are characterized by a discontinuity in the
order parameter. In the context of classical elasticity there are
two types of such discontinuities: dislocations and disclina-
tions. They are crucial in two-dimensional phase transitions
as first shown by Kosterlitz and Thouless and applied to solids
by Nelson, Halperin, and Young [3–5]. The transition hap-
pens through the proliferation of topological defects at finite
temperature that results in a thermal melting of a crystal. In
elasticity such melting occurs in two stages. First, the disloca-
tions condense, while the disclinations are still energetically
too costly. This is the hexatic state, which is an example of
quantum nematic order [6]. In the next stage both disloca-
tions and disclinations are condensing, leading to the isotropic
state. Although defects are a classic subject in the science of
materials, intricate geometric constructions are quite far from
an effective field theory framework usually employed to study
phase transitions. To circumvent this issue, a major theoretical
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insight that allows one to easily incorporate defects as sources
in the field theory formulation is provided by Kleinert [7,8]
(for a review, see Refs. [9–11]). In complete analogy to the
particle-vortex duality he rewrites elasticity as a symmetric
gauge field. This duality maps defects to matter fields charged
by dual gauge fields.

Symmetric tensor gauge fields emerge also as a low-energy
description of certain spin liquids [12–16]. Such gauge fields
are sourced by matter fields with restricted mobility, whose
presence indicate a new type of topological phase of matter
[17,18]. This similarity with quantum elasticity can be made
precise in the language of dualities formulated earlier. Dislo-
cations are vector charges that can move along their Burgers
vector, while disclinations are fully immobile scalar charges.
This behavior leads to the conclusion that elastic defects are
in fact fractons [19]. As a result, elastic dualities serve to
expand our knowledge on classical and quantum elasticity as
well as to give insights into new fractonic phases of matter
[20–33].

In this Letter we intend to study the connection between
fractons and the elasticity of quasicrystals. Quasicrystals are
solids, with long-range positional order and no periodicity
[34–37] (see Ref. [38] for a review). This means that the
elastic description of quasicrystals is fundamentally different
than the one for crystals. The free energy of ordinary crystals
is unchanged under a discrete translation corresponding to the
lattice vectors defining the unit cell of a periodic structure.
When the translation is allowed to vary slowly as a func-
tion of the position, the free energy increases. This can be
parametrized by a displacement field ui(x), which describes
phonons, Goldstone bosons that are low-energy collective
excitations of the crystal. In quasicrystals the free energy
also remains constant under global rearrangements of atomic
positions that can be parametrized by an additional vector
wi(x). Small fluctuations of this vector introduce the so-called
phason field or strain, capturing the low-energy collective
excitations of quasicrystals called phasons.

The main goal of the present Letter is to reformulate
the elastodynamics of quasicrystals [39] in terms of gauge
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theories. Such a formulation allows for a systematic study of
defects and their interactions as well as opening up a possi-
bility to investigate two-dimensional defect-mediated phase
transitions present in quasicrystals. It also provides a theo-
retical background for quantum phases with quasicrystalline
symmetries.

Elasticity of quasicrystals. Quasicrystals are characterized
by two types of displacement fields ui(x) and wi(x). The first
is analogous to the phonon displacement and leads to the
symmetric strain tensor ui j = u ji, where ui j = 1

2 (∂iu j + ∂ jui ).
Contrary to the phonon field ui j , the phason displacement
tensor wi j = ∂iw j is not symmetric, wi j �= w ji. Following the
usual procedure of writing a free energy as an expansion
around the zero displacement ui j = wi j = 0, one can write
down the potential part of the effective action S = ∫

dtd2xL
as

Spot[ui,wi] =
∫

dtd2x
−1

2
(Ci jkl ui jukl )

+
∫

dtd2x
−1

2
(Ki jklwi jwkl )

+
∫

dtd2x
−1

2
(Ri jklwi jukl + R′i jklwi jukl )

≡
∫ −1

2

[
(ui j wi j )

(
Ci jkl Ri jkl

R′
i jkl Ki jkl

)(
ukl

wkl

)]
, (1)

where we have introduced four tensors of elastic coefficients
parametrizing different couplings between fluctuations. We
always assume a summation over repeated indices, which
run over spatial coordinates x and y as we focus on two-
dimensional systems. It is important to note that the phonon
elastic tensor Ci jkl possesses both minor and major sym-
metries, and the couplings between phonons and phasons
represented by Ri jkl and R′i jkl have a minor symmetry of
indices contracted with the phonon field. Finally, Ki jkl has
neither minor nor major symmetries. The nonzero entries of
elastic tensors in quasicrystals can be fixed by group theory in
analogy to crystals. From a known action of discrete symme-
tries one determines quadratic invariants and associated elastic
coefficients (see Ref. [40] for a review). For two-dimensional
quasicrystals such a procedure has been carried out for al-
lowed fivefold [35], eightfold, and 12-fold symmetries [41].
The potential energy in the effective action can be supple-
mented by the kinetic part,

Skin[ui,wi] =
∫

dtd2x[u̇iu̇i + ẇiẇi]. (2)

It is well known that the phason field is diffusive [42,43],
therefore the above elastodynamics describes either the short
time behavior of classical quasicrystals or systems at zero
temperature. Several realizations of quantum systems with
quasicrystalline symmetry have been proposed. These include
bosons on optical lattices [44–46] and correlated electron sys-
tems [47–52]. The partition function for quasicrystal elasticity
reads

Z =
∫

DuiDwieiSkin[ui,wi]+iSpot[ui,wi]. (3)

Our intention is to perform the duality transformation on the
above action. In order to do that we need to write it first in

terms of stress variables. There are two equivalent ways of do-
ing that. One can directly perform the Hubbard-Stratonovich
transformation or write down generalized Hooke’s laws

Ti j = − ∂L
∂ui j

= Ci jkl ukl + Ri jklwkl , (4a)

Hi j = − ∂L
∂wi j

= Ki jklwkl + R′
i jkl ukl , (4b)

solve for displacements in terms of stresses Ti j and Hi j , and
express the action in terms of these variables. To write down
(4a) and (4b) we use the fact that R′

kli j = Ri jkl . These transfor-
mations bring the action to the following form,

S[Ti j, Hi j, ui,w j] =
∫

dtd2x
1

2

[
PiP

i + PiP i

+ (Ti j Hi j )

(
Ci jkl Ri jkl

R′
i jkl Ki jkl

)−1(
Tkl

Hkl

)

+ 2ui(∂μT iμ) + 2wi(∂μHiμ)

]
, (5)

where we have introduced momentum operators Pi = T i0 and
P i = Hi0. Greek letters run over spacetime indices. After
the transformation to stress variables displacements act as
Lagrange multipliers for the conservation of momentum.

Elastic duality for quasicrystals. Dualities offer new in-
sights into the nonperturbative physics of strongly correlated
systems. In 2 + 1 dimensions the core of dualities lies in the
mapping of the Goldstone boson fluctuations onto appropriate
gauge fields. For example, particle-vortex duality maps scalar
fields onto U (1) gauge fields and crystal elasticity maps strain
fluctuations into symmetric tensor gauge fields. The elasticity
of quasicrystals generalizes this mapping and introduces two
sets of distinct elastic gauge fields. In order to see this we
note that by integrating out ui(x) and wi(x) we obtain two
constraints coming from rewriting the action in terms of stress
variables δ(∂μT iμ) and δ(∂μHiμ). In order to have a dual
action for quasicrystals we resolve these constraints by two
tensor gauge fields,

T iμ = εμνρ∂νAi
ρ, Hiμ = εμνρ∂νAi

ρ. (6)

We note that a symmetric tensor such as T iμ can be resolved
by a symmetric tensor field Ai j = Aji and a scalar φ in com-
plete analogy with crystal elasticity,

Pi = εkl∂kAi
l , T i j = ε jk

(−∂0Ai
k + ∂k∂iφ

)
, (7)

however, the resolution of the constraint for Hi j leads to a ten-
sor field Ai j �= A ji that is not symmetric under the exchange
of indices and a vector potential �i,

P i = εkl∂kAi
l , Hi j = ε jk

(−∂0Ai
k + ∂k�

i
)
. (8)

In analogy with Maxwell electrodynamics we can define the
electric and magnetic fields,

Bi = εkl∂kAi
l , Ei

j = εi
k
(−∂0Ak

j + ∂ j∂kφ
)
, (9)

Bi = εkl∂kAi
l , E i

j = εi
k
(−∂0Ak

j + ∂ j�
k
)
. (10)
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These fields are invariant under the following gauge transfor-
mations,

δAi j = ∂i∂ jα, δφ = α̇, (11)

δAi j = ∂ jβi, δ�i = β̇i. (12)

Already at this stage we see that the gauge structure for the
symmetric stress tensor is the same as in scalar fracton the-
ories and the asymmetric stress field leads to a vector gauge
theory [53]. Thus quasicrystal elasticity combines these two
degrees of freedom. We can now write the effective action in
the dual formulation,

Sdual =
∫

dtd2x
1

2

[
BiB

i + BiBi

+ (Ei j Ei j )

(
C̃i jkl R̃i jkl

R̃′
i jkl K̃i jkl

)(
Ekl

Ekl

)]

+
∫

dtd2xLsources. (13)

We have introduced a set of tensors that are yet to be fixed by
calculating the proper inverse defined in (5). We note that the
entries are not just the inverses of the original elastic coeffi-
cients as we need to invert the whole matrix of tensors. The
tilde denotes index rotations, e.g., C̃i jkl = εii′ε j j′εkk′εll ′C i′ j′k′l ′ .
The dual charges, that we later map to defects, couple to the
gauge potentials in the following way,

Lsources = φρ + Ai jJi j + �i�i + Ai jJi j . (14)

The last ingredient that we need is the inverse matrix of elastic
tensors. The explicit form of this matrix is in general compli-
cated and depends on the symmetries of the quasicrystal that
we want to study. In order to have a better intuition about the
structure of this matrix, we focus on a subclass for which the
tensors of elastic coefficients can be decomposed into a set of
projectors,

Ci jkl = c0P(0)
i jkl + c1P(1)

i jkl + c2P(2)
i jkl , (15a)

Ki jkl = k0P(0)
i jkl + k1P(1)

i jkl + k2P(2)
i jkl , (15b)

Ri jkl = r0P(0)
i jkl + r1P(1)

i jkl + r2P(2)
i jkl , (15c)

R′
i jkl = r′

0P(0)
i jkl + r′

1P(1)
i jkl + r′

2P(2)
i jkl , (15d)

where the basis tensors are given by

P(0)
i jkl = 1

2δi jδkl , (16a)

P(1)
i jkl = 1

2 (δikδ jl − δilδ jk ), (16b)

P(2)
i jkl = 1

2 (δikδ jl + δilδ jk ) − 1
2δi jδkl . (16c)

One can check that Pm
i jabPn

abkl = Pm
i jkl if m = n and zero other-

wise. Such a choice is of course an oversimplification, which
will not apply to all systems. However, it illustrates the proof
of concept behind this construction and the result can be
presented in a compact form. In general, in order to construct
the dual formulation for a specific quasicrystal, one has to
specify elastic tensors and then explicitly construct an inverse.
The simplest way to achieve this in two dimensions, for a
given set of elastic parameters, is to pass to the Pauli matrix

representation (see, e.g., Refs. [31,54,55]) and then apply an
algorithm for the inversion of a block matrix [56].

The inverse matrix is determined by the following matrix
equation,

( Ci jmn Ri jmn

R′
i jmn Ki jmn

)(
Ci jkl Ri jkl

R′
i jkl Ki jkl

)
=

(
Idi jmn 0

0 Idi jmn

)
,

(17)
where appropriate index contractions are understood after
the multiplication of matrices. Idi jmn = δimδ jn is the identity
operator for four-tensors. For the case considered, this is a
system of linear equations for 12 coefficients. The solution in
the basis of projectors reads

Ci jkl = k0

�0
P(0)

i jkl + k1

�1
P(1)

i jkl + k2

�2
P(2)

i jkl , (18a)

Ki jkl = c0

�0
P(0)

i jkl + c1

�1
P(1)

i jkl + c2

�2
P(2)

i jkl , (18b)

Ri jkl = − r0

�0
P(0)

i jkl − r1

�1
P(1)

i jkl − r2

�2
P(2)

i jkl , (18c)

R′
i jkl = − r′

0

�0
P(0)

i jkl − r′
1

�1
P(1)

i jkl − r′
2

�2
P(2)

i jkl , (18d)

where �m = cmkm + rmr′
m for each coefficient labeled by i ∈

{0, 1, 2}. We note that it may happen that the matrix of elastic
coefficients is not invertible. In this case it is enough to con-
struct the inverse in the invertible subspace as in the classical
elasticity. Moreover, in analogy with block matrices not all
individual entries have to be invertible for the inverse matrix
to exist.

Defects. Soon after the discovery of quasicrystals questions
about the nature of defects, their dynamics, and interactions
became relevant [35,36,57,58]. Several intricate geometric
constructions are available, however, the intrinsic difficulty
of these methods prevents us from having definite answers
to all relevant questions about defects. Below we argue that
the duality offers a natural, simple language for a system-
atic study of topological singularities in quasicrystals. In the
dual language the elastic defects are mapped to the charges
of the gauge theory. In order to see this mapping one can
decompose the phonon and phason displacement fields into
regular and singular parts ui = ui

reg + ui
sing, wi = wi

reg + wi
sing.

Phonon displacement singularities couple to the conservation
of the stress tensor,

δS =
∫

dtd2x
[
ui

sing∂μT iμ
] =

∫
dtd2x[ρφ + Ji jAi j], (19)

where ρ = ∂ iρi, ρ i = εi
jε

kl∂k∂l u
j
sing, and Ji j =

εi
nε

μν j∂μ∂νun
sing. In the last equality we employ an integration

by parts. The charge ρ is mapped to the disclination
density,

ρdisc = 1
2εk

lε
i j∂i∂ j∂kul

sing. (20)

We now study the coupling of the phason singularities wi
sing.

Following the same logic as above we find

δS =
∫

dtd2x
[
wi

sing∂μHiμ
] =

∫
dtd2x[�i�

i + J i jAi j],

(21)
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where we have introduced matching or stacking faults
as the phason defects are sometimes dubbed in the
literature

�i = εi
jε

kl∂k∂lw
j
sing (22)

and the current

J i j = εi
nε

μν j∂μ∂νw
n
sing. (23)

We can now identify the duality mapping between charges
and defects for phasons. Vector charges in the dual theory
map to the rotated matching faults εi

j�
j . With these mappings

we can study the Gauss laws in the theory. They follow from
the gauge transformations (11) and (12) in the Hamiltonian
formulation of the theory,

H = 
i j Ȧi j + 
H
i j Ȧi j − L, (24)

where 
i j = δS
δȦi j

and 
H
i j = δS

δȦi j
are the canonical momenta

of the phonon and phason fields, respectively. Invariance with
respect to the gauge transformations leads to the following
generalized Gauss laws,

∂i∂ j

i j = ρ, (25)

∂i

i j
H = � j . (26)

We see that these Gauss laws are exactly the same as the ones
constructed for scalar and vector gauge theories [53]. As a
result we can now identify defects in quasicrystals as different
types of fractons. As far as the phonon field is concerned
the defects are the same as in classical elasticity. We have
disclinations that are immobile and dislocations correspond-
ing to the disinclination dipoles that can move only along
their Burgers vector. In addition to that the matching faults
correspond to vector charges. The matching faults conserve
the dipole moment Di, where Di = ∫

xi∂ j�
j = 0. Therefore

the matching faults are fractons with restricted mobility. Given
this, quasicrystals offer a natural playground to investigate
scalar and vector fracton theories.

Defect potential. We now apply the duality to study the
static defect potential in a simple illustrative example of
quasicrystals with fivefold symmetry in the limit of negligi-
ble phonon-phason coupling. The relevant part of the action
reads

S =
∫

dtd2x
1

2

[
(∂i∂ jφ ∂i� j )

(
C̃i jkl 0

0 K̃i jkl

)

×
(

∂k∂lφ

∂k�l

)
+ φρ + �i�i

]
. (27)

In the case of planar fivefold symmetry the elastic tensors are
given by [39]

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk ), (28a)

Ki jkl = K1δikδ jl + K2(δi jδkl − δilδ jk ). (28b)

The above tensors can be expanded in the basis of projectors
upon the following identifications: c0 = 2(λ + μ), c1 = 0,
c2 = 2μ, k1 = K1 + K2, k2 = K1 + K2, k3 = K1 − K2. λ and
μ are the first and second Lamé parameters. Integrating out the
gauge fields φ and �i one obtains the following expression,

L = − 1
2ρT

vec(−q)Vρvec(q), (29)

where ρT
vec = (ρ �1 �2). It gives the static potential between

the defects. The disclination potential is Vρρ = 4μ(λ+μ)
q4(λ+2μ) and

the explicit form of the matching fault potential is given by

V�� =
⎛
⎝

(K1−K2 )[(K1+K2 )q2
1+2K1q2

2]
q4K1

− (K1−K2 )2q1q2

q4K1

− (K1−K2 )2q1q2

q4K1

(K1−K2 )[2K1q2
1+(K1+K2 )q2

2]
q4K1

⎞
⎠.

(30)

In the limit we consider there is no potential between match-
ing faults and defects in the phonon field. Our computation
shows the power of the duality that greatly simplifies the
analysis by matching the defects into charges of appropriate
gauge fields that can be easily dealt with using field theory
methods.

Discussion. We have constructed a dual formulation of
quasicrystal elasticity. It has two stress tensors, one symmetric
and one not, which ultimately leads to the dual description
in terms of the two tensor gauge fields. Both of these fields
couple to fractonic charges dual to dislocations and disclina-
tions in the phonon sector and to matching faults for phasons.
It follows that quasicrystal elasticity is a natural place where
scalar and vector fracton theories coexist.

The duality offers a way to address open questions about
the phase structure of quasicrystals. It was speculated in
the past that a brittle-ductile transition can be related to the
Berezinskii-Kosterlitz-Thouless (BKT) type of transition
[59]. The dual formulation simplifies an analysis of phase
transitions due to defect proliferation. Thus the construction
presented here can be used as a starting point for a detailed
study.
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