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Interaction induced topological states remain one of the most fascinating phenomena in condensed matter
physics. The exciton condensate has recently sparked renewed interest due to the discovery of new candidate
materials and its driving force to realize exotic topological states. In this work, we explore the exciton order
induced high-order topology in the bilayer quantum spin Hall insulators and find that the topological excitonic
corner states can be realized by tuning the gate and magnetic field. When an in-plane Zeeman field is applied
to the system, two or four excitonic boundary-obstructed corner states emerge in the bilayer system for distinct
possible s-wave excitonic pairings. Besides, we also find a two-dimensional excitonic Weyl nodal phase, which
supports flat band edge states connecting the bulk Weyl nodes.
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Introduction. Excitonic insulator [1–4], predicted in the
1960s, is an unconventional insulating state formed by the
condensation of excitons (bound electron-hole pairs) stem-
ming from the Coulomb interaction between electrons and
holes in the conduction and valence bands, respectively.
An excitonic insulator is analogous to a Bardeen-Cooper-
Schrieffer superconductor that results from the condensation
of electron Cooper pairs developed near the Fermi sur-
face. Candidate materials for excitonic insulators previously
studied include quantum well bilayers [5], quantum Hall bi-
layers [6,7], Ta2NiSe5 [8–13], and 1T -TiSe2 [14–17]. After
the discovery of topological insulators, excitonic insulators
with topologically nontrivial properties have been investi-
gated intensively [18–33]. Particularly, a few representative
topological exciton condensates, including the time-reversal
invariant s-wave topological exciton condensate and the
time-reversal breaking topological exciton condensate with
p-wave pairing, have been predicted in HgTe/CdTe [23] and
InAs/GaSb [24] quantum wells, respectively. Importantly, the
evidence for the existence of a topological excitonic insulator
state has been reported experimentally in InAs/GaSb quantum
wells [34,35].

Recently, the concept of topological insulators was gen-
eralized, and a novel topological phase of matter dubbed
higher-order topological insulator [36–42] was established.
Compared to the well-known topological insulators, higher-
order topological insulators exhibit an unusual form of
bulk-boundary correspondence. For instance, a second-order
topological insulator in two dimensions exhibits topologi-
cal gapless boundary states at its zero-dimensional boundary
corners, in contrast to a conventional two-dimensional (2D)
first-order topological insulator which features topologically
protected gapless states at its one-dimensional edge. So far,
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higher-order topology has been explored in various physical
systems [43–94], and particularly Majorana zero-energy cor-
ner modes [64–66] were found in superconducting systems.
Yet, the topological exciton condensates known to date belong
to the first-order topological phases, and the study of higher-
order topology in exciton condensates is still lacking. Given
the similarity of excitonic insulators to superconductors, it is
highly desirable to explore higher-order topology of exciton
condensates in a realistic system.

In this work, we demonstrate that topological corner states,
which are considered as a smoking-gun signature for 2D
second-order topological insulators, can be realized in the
bilayer quantum spin Hall insulators with s-wave interlayer
excitonic pairings. The bilayer quantum spin Hall insulators
can be constructed by two coupled HgTe/CdTe quantum wells
[95] shown in Fig. 1, where the Dirac mass can be tuned
by varying the thickness of the central HgTe layers in the
quantum wells. For the bilayer system with the negative Dirac
mass, four topological excitonic corner states (ECs) are gen-
erated by applying an in-plane Zeeman field. By making use
of the k · p edge theory, we found that ECs originate from
the edge mass domain walls formed by the interplay of the
excitonic order and the Zeeman field. In the case of the pos-
itive Dirac mass, however, only two topological ECs emerge.
In addition, we show that an intriguing 2D excitonic nodal
phase, which supports flat band edge states connecting the
bulk Weyl nodes, could also be realized in this system. Our
study suggests that bilayer quantum spin Hall insulators can
serve as a platform to host excitonic higher-order topological
insulating and nodal phases.

Excitonic corner states for the negative Dirac mass. We
report that a high-order topological excitonic insulator can be
achieved in the bilayer quantum spin Hall insulators by tuning
the bias voltage and in-plane Zeeman field. The low-energy
effective Hamiltonian of the gated bilayer quantum spin Hall
insulators with an applied Zeeman field in the momentum
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FIG. 1. Schematic illustration of the two coupled HgTe quantum
wells with gating (electric bias V ) under the applied in-plane Zeeman
field hx . Electrons and holes (marked by blue and red spheres) resid-
ing on two opposing layers are spatially separated by an insulator
layer. The excitonic gap �X couples electrons with holes to form an
excitonic insulator through the interlayer Coulomb interaction.

space is given by

HQSH(k)=M(k)σz+A(kxσxsz+kyσy)−V

2
τz + h · s, (1)

where the basis is c†
kl = (c†

klα↑, c†
klα↓, c†

klβ↑, c†
klβ↓), α and β

are different orbital degrees of freedom with opposite parity,
↑ and ↓ represent electron spin, and l = 1, 2 is the layer index.
sx,y,z, σx,y,z, and τx,y,z are the Pauli matrices acting on the spin,
orbital, and layer degrees of freedom, respectively. τ0, σ0, and
s0 are the 2×2 identity matrices. M(k) = M − B(k2

x + k2
y ),

where the Dirac mass parameter M determines the topological
insulator phase, and V is the bias potential. h denotes the
applied in-plane Zeeman field. When V =0, this Hamiltonian
is exactly two copies of the Bernevig-Hughes-Zhang (BHZ)
model [96] that describes the HgTe/CdTe quantum wells. The
topologically nontrivial phase of the BHZ model on a square
lattice exits when 0<M/(2B/a2)<2 with the lattice constant
a. We have assumed the spatial separation between these two
layers to be sufficiently large so that the single-particle tun-
neling between layers can be neglected. Note that the model
parameters are dependent on the thickness of the quantum
wells. In subsequent calculations, the following parameters
remain unchanged, A=275 meV nm, B=−1300 meV nm2,
and the lattice constant is a=20 nm [23]. The results remain
valid when the parameters vary. For our purpose, we set the
Dirac mass M =−3 meV in this section. In this case, each
layer has inverted bands and contributes a Kramers pair of
helical gapless edge states as shown in Fig. 2(a).

By turning on the electric bias V , an electron Fermi surface
and a hole Fermi surface are created on layer 1 and layer 2,
respectively. Coherent exciton condensation can be induced
by the interlayer Coulomb interaction. Throughout this paper,
we focus on the time-reversal invariant s-wave exciton pair-
ings which should be the leading order from the mean-field
decomposition of the screened interlayer Coulomb interac-
tion. In general, the s-wave excitonic order parameters could
provide an energy gain to the system, which can be expressed
as HX = �X τiσ j sk with �X > 0 the pairing strength (the sign
change in �X does not affect the following results) and the
subscripts i, j, k = 0, x, y, z. The excitonic order parameters
are considered to be momentum independent thanks to the
short-range interaction. There are four relevant interlayer ex-
citonic order parameters preserving time-reversal symmetry,

FIG. 2. Band structure of a ribbon geometry for (a) V = �X =
hx = 0, (b) V = 1 meV, �X = 2 meV, hx = 0, (c) V = 1 meV, �X =
2 meV, hx = hc

x ≈ 2.06 meV, and (d) V = 1 meV, �X = 2 meV, hx =
3 meV. In (a) and (b), open boundary conditions along the x direction
or y direction give rise to the same results. We take the open boundary
condition in the y direction for (c) and (d). The edge states marked
by solid red lines are merged with the 2D bulk in (d). (e) Energy
spectrum of an Lx×Ly = 100×100 square-shaped sample exhibiting
four midgap corner states marked by the red dots. We use the same
parameter values as in (d). (f) Probability distribution of corner states
indicated in energy spectrum in (e).

which are proportional to τxσzs0, τyσzsz, τyσxsx, and τyσxsy

[23]. We present more details of these four excitonic order
parameters in Ref. [97]. Among these order parameters, it was
found that the τxσzs0-type and τyσzsz-type orders can open a
topological energy gap in the semimetallic bilayer HgTe/CdTe
quantum wells, i.e., M = 0, resulting in a helical topological
excitonic insulator characterized by the Z2 topological invari-
ant, while the τyσxsx-type and τyσxsy-type pairings only lead
to a topologically trivial energy gap in the case of M = 0 [23].

Next, we consider the case of M < 0 with the τyσxsx-type
interlayer excitonic order. The τyσxsy-type order will give rise
to the similar results, which is not discussed here. In the
presence of the τyσxsx-type order, the two pairs of helical edge
states are not stable and gapped out as depicted in Fig. 2(b).
When an in-plane Zeeman field hx is applied along the x
direction, we can see that the quasiparticle edge gap along
the kx direction closes at the critical field hc

x as shown in
Fig. 2(c) and reopens as hx increases [see Fig. 2(d)]. Whereas,
during this process, we verified that the edge gap along the ky

direction does not show the closing-and-reopening behavior
but only has a slight change in its amplitude. When hx > hc

x,
two distinct types of edge gaps are formed along the x and y
directions, then we calculate the energy spectrum for a finite-
sized square sample as shown in Fig. 2(e). We observe four
zero-energy boundary-obstructed midgap states, which are
located at the four corners of the square sample by measuring
the probability density [as shown in Fig. 2(f)].

Next, we discuss the above observed midgap states that
are actually the topologically protected ECs. To unveil their
topological property, we calculate the edge polarization by
using the Wilson loop operators [38,41,50]. For a ribbon
geometry with Ny unit cells in the y direction and Norb
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degrees of freedom per unit cell, we express the Wilson loop
operator Wx,kx on a path along the kx direction as Wx,kx =
Fx,kx+(Nx−1)�kx ···Fx,kx+�kx Fx,kx , where [Fx,kx ]

mn =〈um
kx+�kx

|un
kx
〉

with the step �kx =2π/Nx, and |un
kx
〉 denotes the occupied

Bloch functions with n = 1, . . . , Nocc. Nocc = NorbNy/2 is the
number of occupied bands. The Wilson loop operator Wx,kx

satisfies the following eigenvalue equation

Wx,kx

∣∣ν j
x,kx

〉 = ei2πν
j
x
∣∣ν j

x,kx

〉
, (2)

where j = 1, . . . Nocc. We can define the Wannier Hamiltonian
HWx (kx ) as Wx,kx ≡ eiHWx (kx ), of which the eigenvalues 2πνx

correspond to the Wannier spectrum. The tangential polariza-
tion as a function of Ry is given as [38,41,50]

px(Ry) =
Nocc×Ny∑

j=1

ρ j (Ry)ν j
x , (3)

where ρ j (Ry) = 1
Nx

∑
kx,α,n |[un

kx
]Ry,α[ν j

kx
]n|2 is the probability

density. [un
kx

]Ry,α with α = 1, . . . , Norb, Ry = 1, . . . , Ny repre-

sents the components of the occupied states, and [ν j
x,kx

]n is

the nth component of |ν j
x,kx

〉. The edge polarization at the

y-normal edge is defined by pedge,y
x = ∑Ny/2

Ry=1 px(Ry). To fix the
sign of the polarization, we add a perturbation term δτyσxsy

in our calculations. Similarly, we can derive νy and pedge,x
y .

We plot the Wannier spectra νx and νy as a function of hx in
Figs. 3(a) and 3(b), respectively. When the in-plane Zeeman
field is greater than the critical field hc

x, the ECs appear. Cor-
respondingly, the Wannier spectrum νx has a pair of values
pinned at 1/2, resulting in half quantized edge polarization
pedge,y

x shown in Fig. 3(c). In contrast, pedge,x
y remains vanish-

ing even for hx > hc
x. It indicates that the ECs originate from

the quantized edge polarization pedge,y
x .

Edge theory. To provide an intuitive picture to the appear-
ance of ECs, we construct the edge theory [64] to analyze
the topological mass on each edge. For simplicity, we focus
on the V = 0 case since the bias has no contribution to the
formation of edge mass. The low-energy Hamiltonian of the
exciton condensate around the � point reads

H (k) = A(kxσxsz + kyσy) + [
M − B

(
k2

x + k2
y

)]
σz

+�X τyσxsx + hxsx. (4)

We first consider a semi-infinite geometry occupying the
space x � 0 for edge I as marked in Fig. 2(f). In the spirit
of k · p theory, we replace kx → −i∂x and divide the Hamil-
tonian into H = H0(−i∂x ) + Hp(ky), in which

H0(−i∂x ) = −iAσxsz∂x + (
M + B∂2

x

)
σz,

Hp(ky) = Akyσy + �X τyσxsx, (5)

where all the k2
y terms have been omitted, and hx = 0 for edge

I. So we can solve H0 first, and regard Hp as a perturbation,
which is justified when the exciton gap is small compared
to the energy gap. The eigenvalue equation H0ψα (x) =
Eαψα (x) can be solved under the boundary condition ψα (0)=
ψα (+∞)=0. A straightforward calculation gives four degen-
erate solutions with Eα = 0, whose eigenstates can be written

FIG. 3. (a), (b) Wannier spectra νx and νy versus hx . (c) Edge
polarization pedge,y

x and pedge,x
y along y-normal and x-normal edges,

respectively. In (a)–(c), V =1 meV and �X =2 meV are used.
(d) Phase diagram for topological ECs in the τyσxsx-type exciton
condensation on the plane formed by �X and hx . The red color
region marked by NEI stands for the normal excitonic insulator,
the orange region marked by ECS denotes the region that supports
topological ECs, and the blue region means a normal excitonic metal.
For �X = 0 and hx > |V |/2, the edge states are gapped along the x
direction but remain gapless along the y direction, which is marked
by the solid magenta line. The dashed lines are phase boundaries
determined by the topological condition for ECs 1

2

√|V |2 + 4�2
X <

hx < 1
2

√
(2M + |V |)2 + 4�2

X (see Ref. [97] for the details of the
derivations of phase boundary conditions), which agree well with the
numerical results.

in the following form

ψα (x) = Nx sin(κ1x)e−κ2xeikyyχα, (6)

where α=1, . . . 4, and the normalization constant Nx=
2
√

κ2(κ2
1 + κ2

2 )/κ2
1 with κ1=

√
(4BM − A2)/4B2 and κ2 =

−A/2B. The eigenvectors χα are determined by σyszχα=−χα .
Here we choose

χ1 = |σy = −1〉 ⊗ |↑〉 ⊗ |τz = +1〉,
χ2 = |σy = +1〉 ⊗ |↓〉 ⊗ |τz = +1〉,
χ3 = |σy = −1〉 ⊗ |↑〉 ⊗ |τz = −1〉,
χ4 = |σy = +1〉 ⊗ |↓〉 ⊗ |τz = −1〉. (7)

In this basis set, the matrix elements of the perturbation Hp(ky)
are represented as

HI,αβ (ky) =
∫ +∞

0
dxψ†

α (x)Hp(ky)ψβ (x), (8)

which can be written in a more compact form

HI = −Akysz − �X τysy. (9)
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Similarly, for edges II, III, and IV, we obtain

HII = −Akxsz − �X τysx + hxsx,

HIII = Akysz − �X τysy,

HIV = Akxsz − �X τysx + hxsx. (10)

To be more clear, we introduce a unitary transformation U =
1√
2
( i −i
1 1 ), then the edge Hamiltonians become

H̃I = −Akysz + �X τzsy,

H̃II = −Akxsz + �X τzsx + hxsx,

H̃III = Akysz + �X τzsy,

H̃IV = Akxsz + �X τzsx + hxsx. (11)

Now all the edge Hamiltonians are block diagonal. The ef-
fective masses of edges I and III are MI = MIII = �X , while
the effective masses of edges II and IV in the two blocks
are MII = MIV = �X + hx,�X − hx. Therefore, hx > �X is
the topological criteria to realize the topological ECs when
V = 0. Consequently, the effective edge masses of two ad-
jacent boundaries have different sign, so mass domain walls
appear at the intersection of these boundaries, which results
in zero-energy excitonic modes according to the Jackiw-Rebbi
theory [98].

In Fig. 3(d), we present the phase diagram of the bi-
layer system with the τyσxsx-type exciton condensate which
is subjected to the in-plane Zeeman field hx. The topologi-
cal excitonic corner state phase (ECS) occupies the regime
between the normal excitonic insulator phase (NEI) and the
normal excitonic metal phase (NEM). Here, the phase bound-
aries can be determined by the gap closing of the bulk at

hx = 1
2

√
|V |2 + 4�2

X and hx = 1
2

√
(2M + |V |)2 + 4�2

X , which
agree well with the numerical results. The topological region
becomes narrower by increasing the voltage V . Therefore,
the topological ECs, characterized by the quantized edge po-
larization, can be realized by tuning the gate and in-plane
Zeeman field.

It is necessary to point out that the in-plane Zeeman field
along the y direction cannot induce topological ECs in the case
of τyσxsx-type exciton condensate. We give a more detailed
explanation in Ref. [97] based on the edge theory.

Excitonic corner states and nodal phase for the positive
Dirac mass. Next, we discuss if we can still realize the
topological ECs in the bilayer system without band inversion
occurring in each layer. For the τxσzs0-type exciton conden-
sate, the in-plane Zeeman field can also generate ECs even
when HQSH has non-negative mass M � 0. For our purpose,
we set M =3 meV in this section. Note that the bilayer system
is a topologically trivial semiconductor in the absence of ex-
citonic orders. The numerical calculation shows the in-plane
Zeeman field hx induces two ECs located at the left and right
corners for a diamond-shaped sample [see Fig. 4(a)].

Although the Zeeman field breaks time-reversal symmetry,
hx preserves the twofold rotation symmetry about the x axis
C2x = iσzsx. The first Brillouin zone has a mirror-invariant
line ky =0 preserving the C2x symmetry. We can adopt the
mirror winding number [99] along this line to characterize
the topological properties of this type of ECs. In this line,

FIG. 4. (a) Probability distribution of ECs. Inset: energy spec-
trum. (b) Energy dispersion of the nodal phase for a ribbon geometry
with open boundary condition along the x direction. (c) Bulk polar-
ization of the nodal phase as a function of ky. (d) Phase diagram of
τxσzs0-type exciton condensation under the in-plane Zeeman field.
The bottle green regime marked by ENP represents the excitonic
nodal phase. Same as in Fig. 2(d), the red color region marked by
NEI stands for the normal excitonic insulator, and the orange region
marked by ECS denotes the excitonic corner state phase. The solid
green line means the normal metal driven by hx when �X = 0, while
the solid cyan line denotes the helical excitonic insulator induced by
the τxσzs0-type pairing when hx = 0. In (a), (b), and (c), we set V=
4 meV, �X = 5 meV, hx = 3 meV for (b) and (c), and hx = 1 meV for
(a). In all plots, we choose M = 3 meV.

H (kx, ky = 0) is invariant under the operation of C2x. The
discrete version of H (kx, 0) has the following form

H (kx, 0) = A

a
sin(kxa)σxsz + M(kx, 0)σz

+ hxsx − V

2
τz + �X τxσz, (12)

where M(kx, 0) = M − B[2 − 2 cos(kxa)]/a2. C2x has two
fourfold degenerate eigenvalues of ±1, the eigenvectors of
±1 are 1/

√
2|α〉⊗ (|↓〉 ± |↑〉) ⊗ |l = 2〉, 1/

√
2|β〉⊗(| ↓ 〉 ∓

|↑〉) ⊗ |l = 2〉, 1/
√

2|α〉 ⊗ (|↓〉 ± |↑〉) ⊗ |l=1〉, 1/
√

2|β〉⊗
(|↓〉 ∓ |↑〉) ⊗ |l = 1〉, where |α〉(|β〉), |↑〉(|↓〉), and |l =
1, 2〉(|2〉) are the basis vectors acting on the orbit, spin, and
layer subspaces, respectively. Due to the conserving of C2x,
we project H (kx, 0) into the two subspaces corresponding to
C2x = ±1, i.e., H (kx, 0) = H+(kx, 0) ⊕ H−(kx, 0). The block
Hamiltonians read

H±(kx, 0) = [M(kx, 0) ± hx]σz − V

2
τz

− A

a
sin(kxa)σx + �X τxσz. (13)

Along the line ky = 0, we consider the Wilson loop operator
W±,kx , then the mirror winding number ν± can be evaluated
by [99]

ν± = 1

iπ
log(det[W±,kx ]) mod 2. (14)
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When the ECs emerge, the mirror winding number shows that
ν+ = ν− = 1.

Now let us discuss the excitonic order induced nodal phase
in the bilayer system. In the case of the τxσzs0-type exciton
pairing, a nodal phase with Weyl nodes along the ky axis
emerges. The excitonic nodal phase hosts flat band edge states
as shown in Fig. 4(b). In order to characterize the topological
properties of nodal phase, we use the Wilson loop method to
calculate the bulk polarization of the system. By treating ky as
a parameter, the Hamiltonian is effectively reduced to a one-
dimensional Hamiltonian Hky (kx ). For fixed ky, considering
the Wilson loop operator in the x direction Wx,kx , the Wannier
center ν

j
x is obtained by the following equation

Wx,kx

∣∣ν j
x,kx

〉 = ei2πν
j
x
∣∣ν j

x,kx

〉
. (15)

Then, the bulk polarization can be defined as p =∑
j ν

j
x mod 1 for a given ky. In Fig. 4(c), we plot the calculated

bulk polarization as a function of ky. We can see that the po-
larization is quantized to 1/2 between two nodes and vanishes
at other ky. Therefore, the topology of the nodal phase can be
captured by the ky-dependent polarization.

Finally, the phase diagram for τxσzs0-type exciton conden-
sate on the plane of �X and hx is shown in Fig. 4(d). By
numerically observing the gap closing of the bulk, we define
the phase boundaries. Analytically, the boundary between the
ECS and the excitonic nodal phase (ENP) is determined by

hx =−M +
√

�2
X + |V |2/4, while the boundary between the

NEI and ENP is defined by hx =M −
√

�2
X + |V |2/4 [97].

Conclusion and discussion. In this work, we identified two
distinct types of ECs in the gated bilayer quantum spin Hall
insulator model with s-wave exciton pairings in the presence
of the in-plane Zeeman field. Experimentally, the ECs can
be detected by scanning tunneling microscope measurements.

ECs manifest themselves as in-plane Zeeman field depen-
dent zero-bias peaks in differential conductance (see Sec. V
in Ref. [97] for more details). The different patterns of the
two types of ECs, in turn, could be used to determine the
excitonic pairing of the excitonic insulator in experiments.
We also found an excitonic nodal phase with the flat-band
edge states in this system. Considering these exotic topolog-
ical phases, our work will stimulate more investigations on
higher-order topology and topological nodal phases in exciton
condensates.

Different from superconducting pairings, excitonic pair-
ings do not have to possess particle-hole symmetry. Therefore,
ECs can appear at the finite energy, which is in contrast to
Majorana corner states. In this paper, the ECs are pinned
to zero energy as we use a particle-hole symmetric model.
Removing particle-hole symmetry, we can still expect midgap
ECs, but they will be shifted to the finite energy.

Additionally, we mainly focus on the corner states created
in the time-reversal invariant singlet s-wave exciton conden-
sates hereinbefore. In this case, an in-plane Zeeman field is
necessary to create the ECs, whereas we would like to point
out that Kramers pairs of ECs could be generated in this
bilayer system without applying a Zeeman field when time-
reversal invariant d-wave exciton pairings are formed.
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