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In this study, an order-by-disorder mechanism has been proposed in a two-dimensional PXP model, where
the extensive degeneracy of the classical ground-state manifold is due to strict occupation constraints instead
of geometrical frustrations. By performing an unbias large-scale quantum Monte Carlo simulation, we find
that local quantum fluctuations, which usually work against long-range ordering, lift the macroscopic classical
degeneracy and give rise to a compressible ground state with charge-density-wave long-range order. A simple
trial wave function has been proposed to capture the essence of the ground-state of the two-dimensional PXP
model. The finite-temperature properties of this model have also been studied, and we find a thermal phase
transition with a universality class of a two-dimensional Ising model.
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Introduction. The order-by-disorder mechanism is one of
the most remarkable phenomena in geometrically frustrated
materials, where it is impossible to simultaneously mini-
mize the interacting energy for all bonds in the system.
Hence extensive degeneracy arises in the classical ground-
state manifold. Such a classical ground-state degeneracy may
be partially or completely lifted by subtle effects that normally
work against ordering in a process termed “order by disor-
der,” where particular configurations are selected out of the
degenerate manifold, and long-range order is restored [1–3].
For instance, thermal fluctuations can give rise to entropic dif-
ferences between configurations, hence degeneracy-breaking
free-energy terms at finite temperature [1,2], while at zero
temperature taking into account quantum fluctuations may
lead to degeneracy-breaking zero-point energy that favors or-
dered states [3,4]. Up to now, most studies in this field have
concentrated on frustrated systems. A question thus arises: Is
frustration a necessity for us to observe the order-by-disorder
phenomenon?

In this paper, we attempt to answer this question, focusing
for simplicity on a two-dimensional (2D) PXP model on a
square lattice. In spite of its extreme simplicity, this model not
only provides a prototypical example of the order-by-disorder
phenomenon in a frustration-free system, but it is also closely
related to recent progress with quantum simulators based on
Rydberg atomic systems [5–7], where a neutral atom can
strongly interact with its neighbors via a Rydberg blockade
mechanism, which prevents two nearby atoms from being
simultaneously excited into the excited states [8]. In such a
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highly tunable and controllable platform, the interplay be-
tween constraints resulting from the Rydberg blockade and
the quantum fluctuations could give rise to exotic quantum
matter [9–13] as well as nonequilibrium quantum many-body
dynamics [14–17].

By performing a numerically exact quantum Monte Carlo
(QMC) simulation [18], we study the ground state of a PXP
model in a square lattice, which can be realized in an in-
teracting Rydberg atomic system with zero detuning [19]. It
is shown that in the absence of laser driving, any classical
configuration satisfying the Rydberg blockade condition is a
ground state of this model, yielding a macroscopic degeneracy
in the ground-state manifold. For each atom in the lattice, the
driving laser field induces coupling between the ground state
and the Rydberg state, thus it acts as a local quantum fluc-
tuation. Counterintuitively, such an off-diagonal term (in the
Fock basis), which usually works against long-range order-
ing, is found to lift the macroscopic classical degeneracy and
give rise to a charge-density-wave state with a spontaneous
Z2 symmetry breaking. This result has provided a different
perspective on the order-by-disorder phenomenon, where the
extensive degeneracy lifted by quantum fluctuations comes
from occupation constraints instead of geometrical frustra-
tion.

Model and method. In terms of the hard-core boson lan-
guage, the Hamiltonian of a PXP model reads

H = �
∑

i

(b̃i + b̃†
i ), (1)

where b̃i (b̃†
i ) is the annihilation (creation) operator of the

hard-core bosons operating on the constraint Hilbert space H
that excludes those configurations with two bosons located on
neighboring sites. Similar models have also been proposed to
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describe correlated bosonic systems in a tilted optical lattice
[20–22]. In terms of spin- 1

2 operators, Eq. (1) describes a PXP
model with the Hamiltonian HPXP = �

∑
i σ̃

x
i . Compared to

the one-dimensional version of the related models, whose
ground state and nonequilibrium properties have been inten-
sively studied [16,17,23–26], the 2D PXP model has been
much less studied [27,28].

The PXP model can also be realized in a strongly inter-
acting Rydberg atomic system subjected to a coherent laser
driving field, whose Hamiltonian reads as follows:

HR =
∑

i

[�(|g〉i〈e| + |e〉i〈g|) − δ|e〉i〈e|] + V
∑
〈ij〉

n̂e
i n̂e

j , (2)

where 〈ij〉 indicates a pair of adjacent lattice sites in the L × L
square lattice. |g〉i (|e〉i) denote the internal atomic ground
(excited) state of the atom on site i, and n̂e

i = |e〉i〈e| is the
density operator of the excited state on site i. � and δ are the
Rabi frequency and the detuning of the coherent laser driving
field, and V is the strength of the interaction between the
Rydberg atoms. Here we only consider the nearest-neighbor
interaction, which can be experimentally realized by properly
tuning the Rydberg blockade radius. The ground-state phase
diagram of Eq. (2) has been studied using the density ma-
trix renormalization group (DMRG) method, where different
crystalline ground states and corresponding quantum phase
transitions have been found [13]. Here, to illustrate its rela-
tionship with the order-by-disorder phenomena, we consider
Eq. (2) in the limit V → ∞ and δ → 0, where Eq. (2) turns
into the 2D PXP model (1).

Throughout this paper, we study the 2D PXP model de-
scribed by Eq. (1) using a continuous-time QMC algorithm,
which allows us to study both the ground state and ther-
mal properties up to a significantly large system size. Notice
that local quantum fluctuation in Eq. (1) does not result in
a sign problem in the Monte Carlo sampling, nor does the
occupation constraint, thus the QMC simulation is unbiased
and numerically exact. To sample those (imaginary) time-
space configurations according to their weights in the partition
function, we choose an ergodic set of updates consisting of
randomly inserting/removing on-site pair vertices in the con-
figurations [29]. The constraint complicates the simulation by
introducing correlations between adjacent sites. To approach
the ground state in the QMC simulations, we scale the in-
verse temperature as β = L and take the thermodynamic limit
L → ∞.

Classical limit. We first focus on the case without quantum
fluctuations (� = 0), where any classical configuration in the
Fock basis satisfying the occupation constraint has the same
energy E = 0. In a 1D lattice, the number of these states
diverges exponentially with the system size L as ∼eL ln α with
α = (

√
5 + 1)/2 [30]. In a 2D square lattice, the dimension

of this constraint Hilbert space H still diverges exponentially
with the number of lattice sites N = L2, while it is difficult to
find an analytical expression as simple as that in the 1D case.

Order by disorder in the ground state. Now we consider
the effect of the local quantum fluctuation in Eq. (1), which
breaks the particle number conservation. We first focus on the
ground-state properties. The finite-size scaling of the charge-

FIG. 1. Finite-size scaling of the CDW order parameter m, den-
sity of the bosons n, and the compressibility κ in the 2D L × L PXP
model obtained by QMC simulations with β = L.

density-wave (CDW) order parameter

m = 2

N

√√√√〈[∑
i

(−1)ix+iy n̂i

]2〉
(3)

as well as the density of the bosons

n = 1

N

∑
i

〈ni〉 (4)

are plotted in Fig. 1, from which we can find a nonvan-
ishing CDW order parameter m0 = 0.403(6) at the density
n0 = 0.221(5) in the thermodynamic limit. These results
indicate that the local quantum fluctuation, which usually
works against long-range ordering, selects a quantum state
with CDW long-range order from the extensively degenerate
classical ground-state manifold. Notice that the physical quan-
tities of this model barely depend on the system size L, which
indicates a feature of locality. In other words, the ground state
might be close to a product state. More information on the
ground state can be obtained from the compressibility, which
is defined based on the fluctuations of total particle numbers
as

κ = β

L2
(〈N̂2〉 − 〈N̂〉2), (5)

where N̂ = ∑
i n̂i is the total particle number operator of the

hard-core bosons. The finite-size scaling of κ is also plotted in
Fig. 1, which indicates that the ground state is compressible.
However, due to the explicit breaking of the U(1) symmetry
in Eq. (1), its ground state is not a superfluid.

The order-by-disorder phenomenon in this frustration-free
system and emergent CDW order can be understood as a
consequence of the competition between the quantum fluctua-
tions and the occupation constraint. The quantum fluctuations
(spin-flip terms σ̃ x

i in spin- 1
2 language) could further lower

the energy of the system by resonating the degenerate clas-
sical configurations, thus they are energetically favored in
the ground state. However, two “spin-flip” operators acting
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FIG. 2. Schematic diagram of the trial wave function in Eq. (6)
in terms of spin language.

on a pair of adjacent sites will inevitably give rise to the
configurations that violate the occupation constraint. As a
compromise, the system favors a ground state with as many
“spin-flips” as possible, while they try to keep away from
each other to avoid a Rydberg blockade. One of the simplest
examples satisfying these requirements is a product state with
a wave function: �A = ∏

i |φ〉i, where |φ〉i = |0〉i if i ∈ A, and
|φ〉i = 1√

2
(|0〉i − |1〉i ) if i ∈ B, with A (B) indicating the A (B)

sublattice in the square lattice. |0〉i (|1〉i) indicates the ground
(excited) state of the Rydberg atoms on site i. The state �A

as well as its sublattice symmetric counterpart �B = �A→B

spontaneously break the translational symmetry, thus it ex-
hibits long-range order, which can qualitatively explain the
observed CDW order in the ground state of Eq. (1).

Since there is no spontaneous symmetry breaking for any
finite system, we propose a trial wave function

�trial = 1√
2

(�A + �B), (6)

which is an equally weighted superposition of the symmetry-
breaking states to restore the symmetry but keep the
long-range CDW correlations. In the Fock basis, the wave
function �A (�B) indicates an equally weighted superposition
of all the possible classical configurations in sublattice A (B),
while it leaves the other sublattice empty. A similar trial wave
function without translational symmetry breaking has been
proposed for the 1D PXP model [31] (see Fig. 2).

Such a trial wave function in Eq. (6), in spite of its ex-
treme simplicity, can qualitatively capture most features of the
ground state of Eq. (1). To verify this point numerically, we
compare the results predicted by this trial wave function to our
numerical results (see Table I). We first focus on the physical
quantities. For instance, the average energy predicted by the
trial wave function (6) is −0.5�, which is only 2.4% higher
than its exact value.an In addition, the particle density pre-
dicted by wave function (6) is 0.25, which is also not very far
from its exact value 0.22. To directly compare the trial wave
function to the exact one, we perform exact diagonalization to

TABLE I. Comparisons of physical quantities (particle density
n, CDW order parameter m, and average energy eg = Eg/N) of the
ground state obtained by the trial wave function, the Lanczos method
for a 6 × 6 system, and the QMC simulations.

n m eg

trial 0.25 0.5 −0.5�

Lanczos (6 × 6) 0.209 0.417 −0.513�

QMC (L → ∞) 0.221 0.403 −0.512�

FIG. 3. (a) CDW order parameter m and (b) renormalized cor-
relation length ξ/L as a function of temperature T for a different
system size L in the QMC simulation. The insets are the data collapse
for (a) the order parameter and (b) the renormalized correlation
length using the critical exponents ν = 1 and β = 1/8.

obtain the exact ground-state wave function |�E 〉. Notice that
the occupation constraint significantly reduces the dimension
of the Hamiltonian matrix, thus enabling us to obtain |�E 〉 by
the Lanczos algorithm for a small system. Take a 6 × 6 system
for example. The dimension of the constraint Hilbert space
H is only 0.0035% of that of the full Hilbert space, and the
overlap between the exact wave function and the trial wave
function (6) is 〈�trial|�E 〉 = 0.848 88, which is pretty high
considering that the dimension of these two wave functions
is 2 406 862, and there are no tunable parameters in the trial
wave function (6).

Finite-temperature phase transition. It has been shown that
the ground state of the 2D PXP Eq. (1) spontaneously breaks
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Z2 translational symmetry and exhibits CDW long-range or-
der. Considering the fact that there is only one parameters
� in PXP Eq. (1), at zero temperature, this CDW order will
persist irrespective of the strength of the quantum fluctuation
�. At finite temperature, one may expect a competition be-
tween quantum and thermal fluctuations, which may result
in a finite-temperature phase transition. To verify this point
numerically, we calculate the CDW order parameter as a func-
tion of temperature, as shown in Fig. 3(a). We also calculate
the CDW correlation length ξ (along the x-direction) in the
QMC simulation as [32]

ξ = 1

q1

√
S(π, π )

S(π + q1, π )
− 1, (7)

where S(Q) = 1
N2

∑
i j eiQ·(i−j)〈ninj〉 is the structure factor of

the density-density correlation, q1 = 2π
L . The CDW order pa-

rameter m is defined the same as Eq. (3). The normalized
correlation length ξ/L as a function of temperature for sys-
tems with different sizes L has been plotted in Fig. 3(b), from
which we can find a scaling invariant point indicating a critical
point at Tc = 0.4�. Near the critical point, the correlation
length diverges as ξ ∼ |T − Tc|−ν , and the order parameter
scales as m ∼ |T − Tc|β . To explore the universal class of this
phase transition, we study the scaling behavior around the
critical point. The data collapses as shown in the insets of
Fig. 3 indicate that the critical exponents β = 1/8 and ν = 1,
which agrees with those of the 2D Ising universal class.

Conclusion and outlook. In summary, we observed an
order-by-disorder phenomenon in a frustration-free system,
where the extensive classical ground-state degeneracy is due
to an occupation constraint instead of geometrical frustration.
It is shown that in a 2D PXP model, the competition between
local quantum fluctuation and an occupation constraint gives

rise to a compressible ground state with CDW long-range
order, which could be destroyed by thermal fluctuation via a
finite-temperature phase transition with a universality class of
a 2D Ising model.

Future developments will include a generalization of our
method and result to systems with different types of CDW
orders and quantum fluctuations. For instance, Samajdar et al.
have proposed complex CDW orders in 2D interacting Ry-
dberg atomic systems [13]. Even though most of them are
due to the direct interactions between the Rydberg atoms
in the classical limit, there could be some regimes in the
global phase diagram whose CDW orders are induced by
the order-by-disorder mechanism. Different types of quan-
tum fluctuations, especially those preserving the total particle
number (b̃†

i b̃ j , for instance), are of particular interest, and
one may expect a CDW-to-superfluid transition with increas-
ing doping in this case. In addition, the ground-state phase
diagram of the PXP models with additional terms (e.g., the
chemical potential −μñi) and the corresponding quantum
critical behavior can also be studied [13], even though this
term with μ 	= 0 lifts the extensive degeneracy of the cor-
responding classical model (� = 0), thus it is not directly
related to the order-by-disorder phenomenon discussed here.
Furthermore, our QMC algorithm is ready to be generalized to
frustrated systems (e.g., kagome and triangle lattices), where
the interplay between the frustration, quantum fluctuations,
and constraint may give rise to exotic quantum many-body
states [33,34].
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