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Operator growth in a quantum compass model on a Bethe lattice

X. Zotos
Department of Physics, University of Crete, 70013 Heraklion, Greece;

Foundation for Research and Technology - Hellas, 71110 Heraklion, Greece;
and Leibniz Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden, Germany

(Received 20 November 2020; revised 25 January 2021; accepted 3 May 2021; published 13 May 2021)

The time evolution of local operators in quantum compass models is characterized by simplicity as it can
be represented as expanding and contracting strings of operators. Here we present an analytical solution to the
problem of growth of a local energy operator in a quantum compass model on a Bethe lattice. We find a linear
increase in time of the average operator length and a diffusive spreading of the operator length distribution. Using
a moment method, we evaluate the local energy autocorrelation function that shows a Lorentzian shape at low
frequencies. Furthermore, using a stochastic method, we visualize the expansion of the string cloud.

DOI: 10.1103/PhysRevB.103.L201108

The Bethe lattice [1], due to its distinctive topological
structure, offers exact solutions to statistical mechanics prob-
lems. In recent years, in studies of quantum chaos, there
have been very interesting propositions linking the growth of
local operators in quantum many-body systems under unitary
dynamics to the emergence of irreversibility and dissipative
behavior. Diagnostics such as the out-of-time-order correlator
(OTOC) [2] have been extensively studied in a large variety
of prototype models [3,4] in search of universal features.
The main prediction of these studies is that the operator
evolution has a light-cone structure in space-time, while the
front broadens diffusively as a function of time. Furthermore,
universal properties of operator growth have been proposed
[5] as well as a relation of the OTOC to the Loschmidt
echo [6].

From another perspective, the dynamics of quantum com-
pass models is an old subject motivated by novel materials
with intertwined spin and orbital degrees of freedom [7].
These often two-dimensional quantum magnets are charac-
terized by strongly anisotropic interactions [8] and they have
recently been brought back to attention as prototype, fictitious
spin models for quantum computing [9].

In this work, we study the time evolution of a local energy
operator in a quantum compass model on a Bethe lattice. The
key idea of our study is that the operators generated by the
time evolution of a local energy operator have a very simple
structure, as strings grow and contract on the lattice, i.e., a
discrete quantum branching. This allows us to analytically
evaluate the average size of strings and their distribution as
a function of time and, using a moment method, the energy
autocorrelation function at infinite temperature. Last but not
least, using a stochastic approach, we provide a picture of the
expanding string cloud.

We study the quantum compass model on a Bethe lattice
with threefold coordination, depicted in Fig. 1(a) and given

by the Hamiltonian
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∑
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where τ x,y,z are Pauli pseudospin-1/2 operators and J is the
unit of energy. In Fig. 1(a), zz represents an initial local
energy operator O = τ z

0τ
z
1 . The time evolution eiHt Oe−iHt of

this operator is obtained by successive application of the “Li-
ouvillian” operator L, LO = [H, O], L2O = [H, [H, O]], etc.
In Figs. 1(b)–1(e), we show examples of different orders Lm.
For instance, the operator string in Fig. 1(d) is τ z

0τ
y
1 τ

y
2 τ x

3 τ
y
4

(the numbering of sites is indicative). The key point is the
observation that there is no branching of the generated strings
and that when a term of H acts at the middle of a string, it
is annihilated [10]. Essentially, the Bethe lattice has the same
local bond structure as the honeycomb lattice. Thus the strings
that are generated can be easily visualized and accounted for
as strings expanding by one leg in four possible directions at
their ends or contracting by one leg at either end. It is easy to
assign the operator at each node as, by construction, it is the
end of the corresponding bond. For instance, in the operator
L2O, there are 24 strings: 4 of length-1 at the origin, 4 of
length-1 in the nearest bonds, and 16 of length-3. Thus the
evolution of the number Nm+1

l of strings of length l at the step
Lm+1 is given by the simple recursion relation

Nm+1
l = 2Nm

l+1 + 4Nm
l−1, (2)

with the appropriate boundary condition for Nm
1 , as the appli-

cation of L also annihilates a length-1 string. It describes a
discrete quantum branching. Numerical iteration of (2) gen-
erates Nm

l to the desired order, but it is also easy (see the
Appendix) to obtain an analytical solution.
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FIG. 1. Example of successive string configurations: (a) O =
τ z

0τ
z
1 , (b) LO, (c) L2O, (d)–(f) L3O.

The essential features of the expanding string cloud is
that (i) after an initial transient of about m ∼ 20, the average
length L̄m = ∑

l lPm
l (Pm

l = Nm
l /

∑
l Nm

l ) increases linearly
as a function of Liouville time steps m with slope 1/3; (ii) as
shown in the inset of Fig. 2, the deviation δm = L̄m − (m/3 +
const) decreases as a stretched exponential, ∼e−0.2m0.788

; and
(iii) the distribution of lengths Pm

l , shown in Fig. 3, tends
to a Gaussian with width ∼√

m for large m. The width of
the distribution, shown in the inset of Fig. 3, is given by
σ 2

m = ∑
l (l − L̄m)2Pm

l .
Furthermore, the average length as a function of time can

be obtained from the moment expansion of the probability
distribution,

pl (t ) =
+∞∑
m=0

Nm
l

m!
tm. (3)

FIG. 2. Time dependence of average string length L̄m. Inset: δm

is the deviation from slope m/3, fitted to a stretched exponential.

The normalized distribution Pl (t ) = pl (t )/
∑

l pl (t ) gives
the average length L̄(t ) = ∑

l lPl (t ). As shown in Fig. 4, after
a transient, the average length of strings, L̄(t ), grows linearly
with time t with slope 2.

We should note that in the enumeration of generated
strings, we do not take into account the minus sign (due
to the Pauli pseudospin-1/2 commutation relations) that ap-
pears when a string is added to the list of strings of a given
configuration, but with “head” and “tail” reversed. We have
verified that taking into account these minus signs, appearing
to higher iteration order, does not qualitatively change the
above operator growth picture.

Next, to correlate the diffusive growth of the operator
length distribution to energy transport, we study the frequency
dependence of the local energy autocorrelation function,

C(t ) = 〈O(t )O〉, (4)

in the infinite temperature limit, on a lattice with L spins,

C(t ) = 1

2L
tr O(t )O, (5)

from a moment expansion,

C(t ) =
∞∑

m=0

(−1)m

(2m)!
μ2mt2m, μ2m = 1

2L
tr OL2mO. (6)

FIG. 3. String length distribution Pm
l , m = 20 (black), m = 40

(green), m = 80 (red). Inset: width σ 2
m of distribution Pm

l .
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FIG. 4. Time dependence of average string length L̄(t ) as a func-
tion of time. Inset: the variance σ 2(t ) with slope 6.

As O2 = 1, the autocorrelation function reduces to the
evaluation of the moments, μ2m [11], related to the number
μ̄2m of strings of length one at the origin after m Liouville
steps. For instance, the second moment is equal to 4, as there
are four ways to return to the original string at the origin after
L2O. As we cannot enumerate the moments in an analyti-
cal way, we apply a complete generation and accounting of
strings generated on a finite Bethe lattice with up to 12 branch-
ing steps in each direction. In this calculation, we take into
account the minus signs appearing in the generated operators
through the process discussed above. Furthermore,

S(ω) =
∫ +∞

−∞
C(t )e+iωt dt (7)

is evaluated by an extension to complex frequencies z,

c(z) =
∫ +∞

0
C(t )e−zt dt, Re(z) > 0, (8)

S(ω) = lim
η→0+

2Re[c(η − iω)], (9)

and then c(z) is conveniently expressed as a continued fraction
expansion,

c(z) = 1

z + �1

z+ �2
z+···

. (10)

The coefficients �n are related to the moments μ2m by
recursion relations [11]. A list of the first 12 moments growing
as μ̄m ∼ e1.5m and corresponding � coefficients are given in
the table (note that μm = 2mμ̄m, the factor of 2m coming from
the commutation relation of the Pauli matrices).

μ̄2 μ̄4 μ̄6 μ̄8 μ̄10 μ̄12

4 44 676 12316 249044 5404780
�1 �2 �3 �4 �5 �6

16.00 28.00 27.43 30.24 29.67 30.96

In Fig. 5, we show S(ω) obtained from the continued
fraction with a broadening η = 0.1 and taking an asymptotic

FIG. 5. Autocorrelation function S(ω) and a low-frequency
Lorentzian fit (black symbols). Inset: coefficients of the continued
fraction expansion and an asymptotic.

�n>6 = 33. The low-frequency behavior seems to be well fit-
ted by a Lorentzian; further moments are necessary to confirm
the diffusive character (although the overall shape does not
seem very sensitive to the exact values of the last moments
and asymptotic value). It is an interesting issue whether the
dissipative energy transport is related to the diffusive spread-
ing of the string lengths’ distribution.

As we are dealing with a growth problem, we can apply
a stochastic approach to get a picture of the evolution of the
string cloud. Starting from the initial zz bond, by a random
choice of direction of expansion or contraction of a string,
we stochastically generate a large sample of strings. Their
number of a given configuration at each level of iteration
is, of course, proportional to their number in the complete
evolution of the string cloud. For instance, we can get an
estimate of the moment, μ̄m � Nm Ñm

Ns
, from the known total

number of strings Nm at iteration m, where Ns is the number
in the sample of randomly generated strings after m iterations
and Ñm is the number of zz strings at the origin. Although
this estimate, with an error O( 1√

Ns
), can be very accurate, we

found that it is not sufficient for the evaluation of the �n>6’s
in the continued fraction expansion, as the recursion relations
are a highly unstable procedure.

To create the randomly generated strings, we first code
the nodes of the Bethe lattice with a pair in coordinates
(i, j), where i is the “radial” distance from the origin (1,1)
and j is the “circular” coordinate, e.g., (1,1) is the origin;
(2,1),(2,2),(2,3) are its nearest neighbors; (3,1),(3,2) are the
neighbors of (2,1); (3,3),(3,4) are the neighbors of (2,2); etc.
Thus, the number of nodes at level i is equal to 3 × 2i−2. In the
Bethe lattice, a string is uniquely defined by the coordinates
of the nodes at its two ends, (ib, jb), (ie, je). Therefore next,
in each iteration, we stochastically move one of the two ends
in one of the three possible directions.

To study the evolution of the string cloud, we can define an
average distance of a string from the origin as d = (ib + ie)/2.
In Fig. 6, a picture of the expansion of the string cloud shows
the same features as the above analysis of average length
growth and distribution. We typically consider about 108 ran-
dom string configurations.
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FIG. 6. Color map of the expansion of the string cloud. The color
intensity is proportional to the number of strings, normalized to the
number of samples, at average distance d from the origin after m (for
clarity, m > 4) iterations. The distance d is shown in the x axis; the
number of iterations, m, is shown in the y axis.

In conclusion, this quantum compass branching model is
a paradigm of operator growth. It demonstrates the linear
in time evolution of the average length of operator strings,
the diffusive spread of strings lengths, and the expansion of
the string cloud. The simplicity of the string structure is due
to the fully anisotropic compass interactions on the Bethe
lattice. Despite this apparent simplicity in the description of
the string cloud, a complexity emerges in the distribution of
string lengths and positions that leads to a diffusive growth of
string lengths. It is an open question whether this complex-
ity implies the diffusive transport that we find in the energy
autocorrelation function. The addition of a magnetic field or
“bond disorder,” for instance replacing a zz bond with an xx
bond, only creates side branching. In contrast, the addition of
a different type of interaction, e.g., Heisenberg term, destroys
the string structure. By the stochastic approach as well as
analytical methods, a further study of the operator growth as
a statistical mechanics problem should be possible.

This work was supported by the Deutsche Forschungsge-
meinschaft through Grant No. HE3439/13.

APPENDIX

The recursion relation (2) can be seen as the successive
application of a tridiagonal Toeplitz matrix U of dimension n,
with elements a = 4 above the diagonal and b = 2 below, on
an initial vector N0 = (1, 0, 0, 0, . . .)T . The right eigenvectors
of U are given by |x〉k = 2

n+1

√ a
b sin jkπ

n+1 , j, k = 1, . . . , n; the

left ones are given by 〈x|k = 2
n+1

√
b
a sin jkπ

n+1 , j, k = 1, . . . , n;

and the corresponding eigenvalues εk = 2
√

ab cos kπ
n+1 . Thus

the string length vector Nm
l , l = 1, . . . , m + 1, obtained from

U mN0 = Nm, n > m + 1, has the components

Nm
l =

n∑
k=1

(
2
√

ab cos
kπ

n + 1

)m
2

n + 1

(
b

a

)1/2

× sin
kπ

n + 1

(
a

b

)l/2

sin
klπ

n + 1
. (A1)

Taking n → ∞, we obtain

Nm
l =

(
2

π

) ∫ π

0
dx(2

√
ab cos x)m

(
b

a

)1/2

sin x

×
(

a

b

)l/2

sin(lx). (A2)

This expression is nonzero for m even, l odd; or m odd, l
even; and l � m + 1. Concretely, for m even, l odd,

Nm
l =

(
2

π

)
(2

√
ab)m

(
b

a

)1/2(
a

b

)l/2

× lπ

2m+1

m!(
m
2 − l−1

2

)
!
(

m
2 + l−1

2 + 3
)
!
. (A3)

In the limit of large m, (A3) can be evaluated in the saddle-
point approximation,

Nm
l ∼ e− (l−m/3)2

2σ2 , σ 2 = 8

9
m. (A4)
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