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Pseudogap metal induced by long-range Coulomb interactions
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In correlated electron systems the metallic character of a material can be strongly suppressed near an integer
concentration of conduction electrons as Coulomb interactions forbid the double occupancy of local atomic
orbitals. While the Mott-Hubbard physics arising from such on-site interactions has been largely studied, several
unexplained phenomena observed in correlated materials challenge this description and call for the development
of new ideas. Here we explore a general route for obtaining correlated behavior that is decidedly different from
the spin-related Mott-Hubbard mechanism and instead relies on the presence of unscreened, long-range Coulomb
interactions. We find a pseudogap metal phase characterized by a divergent quasiparticle mass and the opening
of a Coulomb pseudogap in the electronic spectrum. The destruction of the Fermi-liquid state occurs because
the electrons move in a nearly frozen, disordered charge background, as collective charge rearrangements are
drastically slowed down by the frustrating nature of long-range potentials on discrete lattices. The present
pseudogap metal realizes an early conjecture by Efros, that a soft Coulomb gap should appear for quantum
lattice electrons with strong unscreened interactions due to self-generated randomness.
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I. INTRODUCTION

The Mott metal-insulator transition (MIT) is one of the
cornerstones of modern condensed matter physics [1,2]. Orig-
inally devised to explain the cause of the insulating state
in narrow-band materials with partially filled bands, modern
focus has shifted to understanding the anomalous properties of
metals that arise near the MIT and their possible consequences
in stabilizing other phases, including superconductivity. Most
theoretical developments in the field have relied on the Hub-
bard model and its variants, where the Coulomb repulsion
between electrons is reduced to its strongest (on-site) term—
neglecting all nonlocal terms from the outset. Based on these
models and the techniques that have been developed and
applied to the problem, we now have a broad understanding
of the physics of strongly correlated electron systems. De-
spite this widespread success several experimental puzzles in
quantum materials remain however unexplained [3–7], which
drives us to revisit the implicit assumptions in the Mott-
Hubbard description. To this aim we solve a lattice model
which explicitly includes long-range electron-electron inter-
actions, demonstrating that these can give rise to strongly
correlated behavior physically distinct from the Mott type.
Unrelated to the spin degrees of freedom, we find strong mass
renormalization caused by the buildup of nonlocal charge
correlations dressing the quasiparticles, which is accompanied
by the opening of a pseudogap in the single-particle spectrum.
This happens at the approach of Wigner crystallization, where
the fluctuating charge density is collectively slowed down
and behaves effectively as a nearly frozen random medium,
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thereby enabling the Efros-Shklovskii (ES) Coulomb gap phe-
nomenon.

II. MODEL AND METHODS

We study spinless electrons interacting through a long-
range repulsive potential V (R) = V × (R/a)−α on a two-
dimensional lattice, as described by the following Hamilto-
nian [8]:

H = −t
∑

〈i j〉
c†

i c j + 1

2

∑

i j

V (Ri j )(n̂i − n)(n̂ j − n). (1)

Here c†
i and ci are creation and annihilation operators for elec-

trons on local atomic orbitals; n̂i is the local density operator; t
is the hopping matrix element between nearest-neighbor sites,
which we take to be isotropic; and n = 1/2 is the average
electron concentration. The strength of the interactions is con-
trolled by V , the value of the potential at one lattice spacing
a (which we set as the unit length). For illustrative purposes
we choose to present results for the triangular lattice, but our
findings are not specific to this particular lattice geometry
(see Supplemental Material [9]). We explore the full phase
diagram of the model, taking the power-law exponent α as
a continuous parameter. The chosen form of V (R) includes
the pristine Coulomb potential V (R) ∼ 1/R (α = 1) and the
commonly studied nearest-neighbor repulsion characteristic
of the extended Hubbard model (α = ∞), as well as the
dipolar form V (R) ∼ 1/R3 of the two-dimensional electron
gas near a metallic gate (α = 3).

Equation (1) is solved numerically via both Lanczos and
brute force exact diagonalization at zero temperature on finite-
size clusters with Ns = 12, 18, 24 sites [10]. Finite-size errors
on the kinetic part are minimized by averaging over twisted
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FIG. 1. Phase diagram of the triangular lattice model with long-
range interactions. The line and the full symbols indicate the
metal-insulator transition to a stripe-ordered Wigner crystal, signaled
by the vanishing of the Drude weight D (Ns = 18 sites, using 121
TBCs). The color map is the Drude weight (697 grid points, Ns =
12 sites, 400 TBCs). The gray dashed line is the charge ordering
transition as obtained from the random-phase approximation, which
ignores correlations and does not capture the extreme fragility of
the Wigner crystal. The black dashed and dotted lines are strong-
coupling estimates for the Wigner crystal melting (see text).

boundary conditions (TBCs) both at fixed particle number
[11] and in the grand-canonical ensemble [12,13], which re-
stores the exact Ns → ∞ result in the noninteracting limit,
V/t → 0 (see Supplemental Material [9]). For the interaction
part, we extend the cluster size to the thermodynamic limit by
considering infinitely repeated simulation cells. We perform
the corresponding lattice sums using the Ewald summation
method [8], which ensures that the electrostatic (Madelung)
energy of periodic configurations is exactly recovered in the
classical limit, t/V → 0. Details on the calculation of observ-
ables can be found in the Supplemental Material [9].

III. PHASE DIAGRAM

Figure 1 presents the phase diagram of the model as a
function of the power-law exponent α. Four different regions
are found: Normal metal at weak interaction strengths, and
the pinball liquid (PL), stripe-ordered Wigner crystal, and
pseudogap metal at strong interactions. The origin of all three
strongly interacting phases can be understood starting from
the classical limit of the model. At t/V = 0, for nearest-
neighbor repulsive potentials (α → ∞, right side of Fig. 1)
there exist infinitely many classical configurations, where
part of the particles (“pins”) are located on a superlattice
with threefold periodicity, the other particles (“balls”) be-
ing randomly distributed on the remaining honeycomb lattice
[14], all having the same Madelung energy EMad/Ns = V/2.
This degeneracy is lifted by quantum fluctuations: as soon
as t/V > 0 (V/t < ∞), minimizing the kinetic term for the
balls provides a net energy gain ∝ t , identifying a unique
macroscopic ground state—the PL [14]. This state has strong
threefold correlations reminiscent of the classical limit and a
weakly metallic character, which progressively evolves into

a normal metal upon reduction of the interaction strength
V/t [15].

Long-range interactions also immediately lift the massive
degeneracy characterizing the classical limit [16]. As soon as
α < ∞ (bottom part of Fig. 1), the interactions beyond nearest
neighbors favor linear stripe configurations, which become
the most stable states at t = 0. The stripe phase, which is
the lattice analog of a Wigner crystal [17], remains insulating
in the presence of quantum fluctuations at small t > 0, as
indicated by the vanishing of the Drude weight [Figs. 1 and
2(c)]. The pinball liquid can still be stabilized above some
critical value of t/V as long as α � 2. The potential-energy
difference with the classically more stable stripe configura-
tions behaves asymptotically as �E ∝ V/(R2)α , with R2 =√

3 the second neighbor distance. The transition from stripes
to PL occurs when the kinetic-energy gain associated with the
itinerant carriers overcomes such energy difference, leading to
(V/t )c ∝ 3α/2 (dotted line in Fig. 1).

IV. SUPPRESSION OF ORDER
BY THE LONG-RANGE INTERACTIONS

Reducing the long-range exponent below α � 2 reveals a
domelike shape, with the stripe-ordered insulator becoming
more and more unstable with increasing range of interactions.
The fragility of Wigner crystal order is a known feature of
long-range interactions in the continuum: In the jellium model
with pure Coulomb repulsion (α = 1), the ordered state melts
due to the existence of extremely soft, shear collective modes
that are easily accessible via a low energetic cost [8,18,19].
For this reason, the ratio of interaction to kinetic energy, as
given by the appropriate dimensionless interaction parameter,
is large at the transition: rs 	 31 for quantum electrons in d =
2 [20]. Strong interaction effects then naturally persist into
the metallic state beyond melting, causing short-range spatial
correlations that are reminiscent of those in the ordered phase
[21], and a consequently large correlation energy.

Analogously, for quantum lattice electrons as considered
here, long-range interactions favor charge fluctuations, desta-
bilizing the Wigner crystal (stripe) order and uncovering the
correlated metallic state that lies underneath. To assess this
effect, we again resort to the t/V → 0 limit and evaluate
the energy required to create a defect of the ordered pattern,
Ed [17], which is obtained by displacing a carrier from its
equilibrium position on the stripe to a neighboring unoccupied
site on the lattice. While this energy cost is exactly Ed = V in
the nearest-neighbor limit (α → ∞), it is steadily suppressed
upon increasing the range of the interactions. As a result,
defects are more and more easily created by quantum fluc-
tuations when t > 0. The quantum melting transition occurs
through proliferation of such defects when t ∼ Ed [17,22,23].
From the asymptotic expression Ed 	 0.469V α we obtain
(V/t )c ∝ 1/α for small α, as observed in Fig. 1 (black dashed
line). For comparison we show the transition predicted by
the random-phase approximation (gray dashed line) [24]. This
approximation captures the onset of local charge order but it
completely misses the fragility of long-range order at small
α, which arises from correlations beyond mean-field level.
Remarkably, the pure Coulomb case [α = 1, (V/t )c 	 29, cor-
responding to rs = 7.2] lies well on the asymptotic “small α”
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(a) (b) (c)

FIG. 2. Pseudogap metal. (a) Spectral function A(ω) at α = 1 and Ns = 18 and averaged over 16 TBCs, illustrating the pseudogap
phenomenon. All spectra are smoothened by a Gaussian broadening δ = 0.7t . (b) Distribution of classical local potentials P(φ) (broadening
δ = 0.05V ), showing the opening of the Coulomb gap; the dashed line is P ∼ e−V/ξ |φ| with ξ = 2; the values of V/t and the color code are the
same as in (a). (c) Drude weight D (averaged over 121 TBCs) normalized by the exact noninteracting value D0 = 0.247, quasiparticle weight
Z (angular averaged over the Fermi surface), and density of states A(μ) at the Fermi energy, divided by the noninteracting value. The inset
shows P(0), tracking the plasma dip. The dashed line is P(0) ∼ |V − Vc|2.

side of the dome: in this regime we have Ed 
 V , signifying
that the local, short-range energy scale V and the global, long-
range scale responsible for collective behavior and melting
are indeed well separated. As we shall see, this separation
of energy scales has profound consequences on the electronic
properties of the metal.

V. PSEUDOGAP METAL

Figure 2(a) illustrates the evolution as a function of V/t of
the local single-particle spectral function A(ω) in the metallic
state. As the interaction strength increases, a pseudogap opens
at the Fermi energy (ω = μ), which progressively deepens
and broadens as excitations move towards high energies, ω ∼
V . The density of states (DOS) at the Fermi energy, A(μ),
falls approximately linearly with V/t , then flattens deep in
the pseudogap phase and eventually vanishes at the MIT at
(V/t )c 	 29 [Fig. 2(c)]; the pseudogap coalesces into a hard
gap in the stripe phase beyond this value. Figure S17 in Sup-
plemental Material [9] shows analogous results obtained on
the square lattice, demonstrating that the source of frustration
responsible for the pseudogap formation originates from the
long-range interactions, and not the lattice geometry [25].

Concomitant with the development of the pseudogap in
the one-particle spectrum, electronic correlations build up,
signalled by a steady decrease of both the Drude weight,
D, and the quasiparticle weight, Z , with the latter following
closely the behavior of A(μ) [Fig. 2(c)]. At the MIT both
D and Z vanish, indicating the divergence of the quasipar-
ticle mass, m∗/mb ∝ 1/Z , and of the optical effective mass,
m∗

opt/mb = D0/D (see Supplemental Material [9]). Strikingly,
the mechanism for mass divergence at work here is radically
different from the spin-related mechanism involved in the
bandwidth-controlled Mott-Hubbard transition. In the case of
the Mott-Hubbard MIT, the spectral function features a quasi-
particle peak that remains pinned at the Fermi energy, and the
shrinking of which with Z mostly causes the divergence of the
effective mass [1,2]. Here no peak narrowing is found, and
it is instead the value of the renormalized DOS at the Fermi

energy, A(μ), that falls continuously to zero controlling the
quasiparticle renormalization [Fig. 2(c)].

VI. SELF-GENERATED RANDOMNESS
AND SHORT-RANGE CORRELATIONS

The pseudogap phenomenon revealed in the preceding
paragraphs is strongly reminiscent of the soft Coulomb gap
characteristic of disordered insulators. There, stability argu-
ments imply that the DOS of an interacting electron system in
the presence of quenched disorder must vanish at the Fermi
energy [26], due to their long-range mutual interactions. Sim-
ilar physics was also reported in clean classical Coulomb
liquids, where it was shown that the long-distance potentials
from electrons beyond the correlation length, when taken
collectively, act as a source of (self-generated) randomness
[8,16,27–29]. The observations presented in Fig. 2 highlight
that the phenomenon of self-generated randomness and the as-
sociated Coulomb pseudogap exist also in the clean quantum
case, as hypothesized by Efros almost three decades ago [27].
The resemblance between the quantum phase diagram Fig. 1
and its classical analog determined in Ref. [8] is striking.

To track the origin of the pseudogap, we determine the dis-
tribution of electrostatic site energies in the quantum ground
state |ψ〉, which can be evaluated as P(φi ) = 〈ψ |δ[φi −∑

j �=i V (Ri j )(n̂ j − n)]|ψ〉 (the site index can be ignored as this
quantity is translationally invariant in the present case). For
classical electrons, P(φ) would reduce to the density of states
studied in the Efros-Shklovskii soft gap problem [26]. In the
quantum case, it represents the fluctuating background where
the electron motion takes place.

Figure 2(b) shows that, prior to the pseudogap opening
observed in the full electronic spectrum, a broad dip develops
already in the distribution of site potentials. Interestingly, its
shape at the transition is compatible with that caused by short-
range charge correlations in self-generated Coulomb glasses,
P ∼ e−V/ξ |φ| (dashed line) [29]. There, the correlation hole
that forms around electrons in order to minimize their mutual
interactions was shown to deplete the classical DOS below
the ES bound, PES ∼ |φ| (PES ∼ |φ|d/α−1 in the general case
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in d dimensions and exponent α). Such correlation hole, or
“electronic polaron,” is a common feature of electron liquids
with unscreened Coulomb interactions [21]. Its buildup within
the pseudogap phase is confirmed here by direct evaluation
of the charge correlation function (see Supplemental Material
[9]). We have verified that our method fully recovers the
prediction PES ∼ |φ| upon suppressing short-range correla-
tions via the introduction of extrinsic (quenched) disorder,
and that the pseudogap disappears for short-range interactions
α > D, demonstrating that the observed pseudogap is the con-
sequence of the long-range Coulomb interaction.

VII. SOFT COLLECTIVE EXCITATIONS

The results presented above demonstrate strongly corre-
lated behavior arising from long-range charge-charge interac-
tions, which is unrelated to the paradigmatic Mott mechanism.
Our findings indicate that in systems with unscreened, long-
range interactions, the collective charge fluctuations are able
to provide a self-generated random environment, thereby
enabling precursors of the Efros-Shklovskii Coulomb gap
phenomenon. This fluctuating environment is polarizable and
responds to the motion of the individual electrons, being
ultimately responsible for the mass enhancement via the for-
mation of electronic polarons.

The existence of a Coulomb pseudogap necessarily im-
plies that there is a marked separation of timescales between
the (fast) motion of individual electrons and the (much
slower) global rearrangements of the charge at long dis-
tances: The idea being that the charge fluctuation background
is almost frozen, being collectively jammed by the mu-
tual interactions among its constituents [8,18,19,28,30]. We
can actually provide quantitative support to this statement,
by evaluating the spectrum of charge fluctuations, D(ω) =∑

m |〈m| ρ̂q|ψ〉|2δ[ω − (Em − E0)], where ρ̂q is the Fourier
transform of the charge density n̂i, and m and Em are all the
eigenstates and eigenenergies. Figure 3(a) shows that there
is a strong contribution to the spectrum that is soft through-
out the pseudogap phase, peaking at ωcoll 	 0.2–0.25t [see
also Fig. 3(b)]. This is about 30–50 times lower than the
free-electron bandwidth, 9t . This collective contribution is
mostly unrelated to the critical mode responsible for stripe
ordering [wave vector q ≡ M, which instead softens only
at the MIT, see inset and Fig. 3(b)]. It arises instead from
a diffuse region near the edges of the Brillouin zone [16],
indicative of the existence of many competing orders being
frustrated by the long-range interactions [16,28]. Translated
to real space, these zone-boundary features correspond to the
local (short-distance) dipoles postulated in Ref. [30], aris-
ing from frustrated charge correlations. The fact that within
the pseudogap phase the metallic character measured by the
Drude weight, D/D0, is larger than that implied by the one-
particle residue Z alone, as observed in Fig. 2(c), suggests that
such collective modes could be actively contributing to charge
transport as an additional conduction channel [17,31].

VIII. CONCLUDING REMARKS

The existence of self-generated randomness with a sup-
pressed energy scale implies an equally suppressed tem-

(a) (b)

FIG. 3. Soft collective excitations in the pseudogap phase.
(a) Spectral function D(ω) of the charge fluctuations, averaged over
the Brillouin zone (Gaussian broadening δ = 0.2t). The inset shows
the same quantity evaluated at the stripe-ordering wave vector q =
M; this critical mode is also visible as a shoulder in the main panel
(circles). (b) Frequency of the boson peak, controlling the timescale
of the charge fluctuations.

perature scale at which quantum coherence is lost. The
collapse onto classical behavior should be further enhanced
by the fact that the random potentials possess a continu-
ous spectrum [Fig. 2(b)], thus providing a natural source
of electron decoherence [32]. This could explain, for ex-
ample, the puzzling behavior observed in the quarter-filled
organic compounds θ -(BEDT-TTF)2X. In these materials, the
electron liquid shows precursors of glassiness despite the ab-
sence of structural disorder [33,34], that are surprisingly well
captured by classical models [16]. Moreover, in agreement
with the results found here, these materials display frustrated
metastable orders (seen as diffuse spots in x-ray-diffraction
images) that compete with the stripes [33]. Above an ex-
tremely low Fermi temperature, T ∗

FL ∼ 20K, which is two
orders of magnitude lower than predicted by band-structure
arguments, the resistivity displays strange metal behavior
with an approximately linear temperature dependence [35,36]
compatible with strong scattering by low-energy bosonic
modes. The system also features a displaced Drude peak in
the optical conductivity, suggestive of disorder-induced lo-
calization, indicating that self-generated randomness could
also be playing a key role in the charge transport mechanism
[37,38].

Due to the general nature of the effects revealed here,
it will be interesting to investigate their relevance in other
quantum materials exhibiting bad metallic behavior [3,6],
including those near integer fillings where long-range in-
teractions are customarily neglected. In these systems, the
reduced screening ability of electrons at the onset of the
Mott transition should imply that long-range potentials play
a significant role [7,28,30], therefore contributing to their
anomalous thermodynamic and transport properties: the im-
portance of long-range interactions and the ensuing nearly
classical behavior of charge fluctuations could bring the
T -linear behavior of the resistivity, which characterizes
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correlated electrons at very high temperatures [39], down
to the experimentally relevant temperature range. Generally
speaking, the interplay of Wigner and Mott physics should
provide a promising direction in research on strongly corre-
lated materials.
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