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Many-body wavefunctions for quantum impurities out of equilibrium
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We present a method for calculating the time-dependent many-body wavefunction that follows a local quench.
We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving
wavefunction following a quench where the dot is suddenly attached to the leads at t = 0. The method, which
does not use Bethe ansatz, also works in other quantum impurity models (we include results for the interacting
resonant level and the Anderson impurity model) and may be of wider applicability. In the particular case of the
Kondo model, we show that the long-time limit (with the system size taken to infinity first) of the time-evolving
wavefunction is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation.
We show that the electric current in the time-evolving wavefunction is given by a series expression that can be
expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either
case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic
coupling and also reveals another universal regime of strong ferromagnetic coupling, with Kondo temperature

T (F )
K = De− 3π2

8 ρ|J| (J < 0, ρ|J| → ∞). In this regime, the differential conductance dI/dV reaches the unitarity
limit 2e2/h asymptotically at large voltage or temperature.

DOI: 10.1103/PhysRevB.103.L201103

Introduction. The Kondo model, which describes a local-
ized spin interacting via spin exchange with one or more
reservoirs of electrons, has long been a source of new ideas
in theoretical physics [1]. Its nonequilibrium physics became
of great interest when the model was realized in quantum dot
systems in the Coulomb blockade regime, with attached leads
serving as reservoirs. When a voltage difference is imposed
between two leads, an electric current is driven through the
dot [2–5]. The corresponding nonequilibrium theory has been
studied by a variety of approaches, both in the Kondo model
itself [6–11] and in the more general Anderson impurity
model [12–21] (see the references of Ref. [11] for a more
complete list).

In this Letter, we probe the nonequilibrium physics via a
quantum quench, a protocol in which the ground state of an
initial Hamiltonian Hi is evolved in time by a final Hamilto-
nian Hf following a sudden change of parameters. Here, the
initial state of the quench consists of a free Fermi sea in each
of the two leads—with the applied voltage appearing as the
difference in chemical potentials—and the quench protocol
consists of evolving this state by the full Kondo Hamiltonian
Hf ≡ H (see Fig. 1). This quench allows us to access the
steady-state regime of the nonequilibrium Kondo model in the
long-time limit (we first take the limit of infinite system size
so that the leads serve as thermal baths [8]).

We present here the results of a method for calculating the
many-body wavefunction following this quench. This method
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is also applicable to other quantum impurity problems and
may have wider applicability. We concentrate on the steady
state current as a function of the source-drain voltage and
the temperatures of the leads. We first calculate the current
in the much-studied weak coupling antiferromagnetic regime
and find, as expected, that at energy scales much smaller than
the bandwidth, the current is a universal function governed
by an emergent scale: the Kondo temperature TK . We then
proceed to identify another universal regime: strong ferromag-
netic coupling, with its own scale T (F)

K . Further details on our
calculations are available in Refs. [22–24].

With universality in mind, we study the two-lead Kondo
model in the wide-band limit [8]:

H = −i
∫ L/2

−L/2
dx
∑

γ=1,2

ψ†
γ a(x)

d

dx
ψγ a(x)

+
∑

γ ,γ ′=1,2

1

2
Jψ†

γ a(0)σaa′ψγ ′a′ (0) · S. (1)

Formally, ρ = ρ1 ⊗ ρ2 is the initial density matrix, where
ργ = exp [− 1

Tγ

∑
|k|<D(k − μγ )c†

γ kacγ ka] is the Fermi distri-
bution (cut off by the bandwidth D) in lead γ = 1, 2, and
ρ(t ) = e−iHtρeiHt is the time-evolving density matrix follow-
ing the quench at t = 0.

Our method provides the explicit and exact solution for
ρ(t ). The solution applies for 0 � t < L/2, which is the
regime of interest: In the calculation of the current, we take
the steady-state limit (t → ∞) after the thermodynamic limit
(L → ∞ with D fixed, hence a fixed density of electrons). The
thermodynamic limit is taken order by order either in J or 1/J .

Exact wavefunction. It suffices to find the time evolution
of an N-electron state (rather than density matrix) with arbi-
trary quantum numbers, |�(t )〉 ≡ e−iHt c†

γN kN aN
· · · c†

γ1k1a1
|a0〉,
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FIG. 1. Schematic of the quench process. Prior to t = 0, the
leads are filled with free electrons, with no tunneling to the dot
allowed. From t = 0 onward, the system evolves with the many-body
Hamiltonian H , with tunneling to and from the leads resulting in an
electric current.

where a0 is the impurity spin. Our method yields [25]

|�(t )〉 =
N∑

n=0

2−n/2
∑

1�m1<···<mn�N

(−1)m1+···+mn+1

×
(

N∏
j=1, j �=m� ∀�

e−ik j t c†
γ j k j a j

) ∑
σ∈Sym(n)

(sgn σ )

×∣∣χkmσ (1) amσ (1) ···kmσ (n) amσ (n) ,a0 (t )
〉
, (2)

where c†
γ ka = ∫ L/2

−L/2 dx
eikxψ†

γ a(x)√
L

,∣∣χk1a1···knan,a0 (t )
〉 = ∫ t

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn δc0

a0
δb0

cn

×
[

n∏
j=1

e−ik j (t−x j )

√
L

(−iT b j c j
a j c j−1

)
ψ

†
eb j

(x j )

]
|b0〉, (3)

ψ†
ea = ψ

†
1a+ψ

†
2a√

2
, and T b1b0

a1a0
= [− 1

2 J (1 + i 3
4 J )δb1

a1
δb0

a0
+ Jδb0

a1

δb1
a0

]/(1 − i 1
2 J + 3

16 J2) (the T matrix for a single electron
crossing the impurity).

With minor modifications, the solution can be extended to
a more general model with an anisotropic Kondo interaction, a
potential scattering term, and a magnetic field on the impurity
[22,24].

In the long-time limit (with the system size always larger),
|�(t )〉 becomes a nonequilibrium steady state (NESS): an
energy eigenstate of H with the boundary condition of in-
coming plane waves with the quantum numbers γ jk ja j (i.e., a
many-body Lippmann-Schwinger “in” state). The NESS can
be found directly using a time-independent version of our
method.

The current. Using our exact answer for ρ(t ), we
proceed to calculate the average electric current, I (t ) =
− d

dt Tr[ρ(t )N̂1]/Trρ, where N̂1 = ∫ L/2
−L/2 dx ψ

†
1a(x)ψ1a(x). For

a fixed system size L and bandwidth D, we can write the
current as a finite sum; however, taking the thermodynamic
limit (L → ∞) is a formidable task. We take the limit order by
order in an expansion parameter which can be either J or 1/J .
In this way, we arrive at a series answer that probes both the
usual weak coupling regime of the model and a new strongly
coupled regime.

In the thermodynamic limit, sums over momenta be-
come integrals involving the Fermi functions fγ (k) ≡
1/(e(k−μγ )/Tγ + 1) of the leads, resulting in a series expression
for the current:

I (T1, μ1; T2, μ2; t ) = Re

⎧⎨⎩ ∂

∂t

∞∑
n=1

∑
σ∈Sym(n)

W (σ )
n (J )

∫ D

−D

dk1 · · · dkn

(2π )n

∫ t

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
dxn

×
[

n−1∏
j=1

[ f1(k j ) + f2(k j )]e
i(kσ j −k j )x j

]
[ f1(kn) − f2(kn)]ei(kσn −kn )xn

}
, (4)

where

W (σ )
n (J ) = (sgn σ )

i

2n+1

∑
a1, . . . , an

b1, . . . , bn−1
c0, c′

0 . . . , cn−1, c′
n−1

δ
c′

0
c0T

anc′
n−1

aσn cn−1

n−1∏
j=1

(
S∗b j c′

j

a j c′
j−1
Sb j c j

aσ j c j−1 − δ
b j
a j δ

c′
j

c′
j−1

δ
b j
aσ j

δ
c j
c j−1

)
, (5)

with Sb1b0
a1a0

≡ δb1
a1

δb0
a0

− iT b1b0
a1a0

[26]. It can be shown that the nth
term of the current series (4) is of order Jn+1 as J → 0 and (for
n � 2) of order 1/Jn+1 as |J| → ∞; this means that the series
applies for both weak and strong coupling.

Steady state. A basic question in quench problems is the
existence of the steady-state limit of observable quantities,
such as the current: Isteady state(T1, T2,V ) = limt→∞ I (T1, μ1 =
0; T2, μ2 = −V ; t ). We have shown that all orders of our series
(in J or in 1/J) converge in the steady-state limit, and we
have verified that the same series for the steady-state current
is obtained by directly evaluating the current operator in the
NESS. Our results complement those of Doyon and Andrei
[8], who showed that the Keldysh perturbation series for the
current converges in time to all orders in J .

We proceed to investigate the steady-state current in the
scaling regime, in which the external scales T1, T2, and V are
much smaller than the bandwidth. We express our answers in
terms of the usual g ≡ ρJ = 1

2π
J [27].

First, we review what is expected. In the regime of
small |g|, the perturbative renormalizability of the Kondo
model constrains the steady-state current to the form
Isteady state(T1, T2,V ) → V

∑∞
n=2,0�m�n−2 anmgn lnm 2D

M , where

M =
√

1
2 (T 2

1 + T 2
2 ) + V 2 and where the coefficients anm de-

pend only on the ratios T1/V and T2/V . (This is shown in
a very general setting by Delamotte in Ref. [28]; our choice
of V for the dimensionful prefactor and 2D/M for the ar-
gument of the log is one of convenience). Our calculation
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indeed produces a series of this form (see Supplemental
Material [29]), which we use as a check by comparing
to known results in the universal antiferromagnetic regime.
To obtain a universal answer, we use the renormalization
group (RG) scaling equation (or Callan-Symanzik equation)
[D ∂

∂D + β(g) ∂
∂g + γ (g)]Isteady state = 0. The solution takes the

form I (T1, T2,V ) = funiversal(T1/TK , T2/TK ,V/TK )e− ∫ g
0 dg′ γ (g′ )

β(g′ ) ,
where the g-dependent scale factor goes to unity in the scaling
limit (g → 0+, D → ∞ with TK fixed) because γ (g), we find,
starts at the same order in g as β(g). (Such a scale factor has
been seen before in the Kondo problem; see Ref. [30]).

Let us consider the differential conductance G ≡
∂Isteady state/∂V in the scaling limit, focusing on the case of
equal lead temperatures (T1 = T2). At the leading order, we
obtain the standard result G = G0

3π2/16

ln2
√

T 2+V 2

TK

[6], where G0 =
2e2/h is the unitarity limit of conductance and TK = De−1/(2g)

is the Kondo temperature. The next order corrections to G and
TK are affected by our cutoff scheme (see Refs. [22,24] for
further discussion); however, the first correction beyond the
leading order in the quantity G(T,V ) ≡ G(T,V ) − G(T =
0,V ) agrees with the one-loop results of Ref. [8] after correct-
ing some minor errors in Ref. [8].

Universal strong ferromagnetic regime. Our approach
reveals another universal regime of the Kondo model:
strong ferromagnetic coupling (g < 0, |g|  1). We note
that there are proposals for mesoscopic realizations [31,32]
of the weak ferromagnetic model (see also Ref. [33]); it
may be possible to realize the strong ferromagnetic model
by modifying these proposals to use the charge Kondo
effect [34].

For strong coupling of either sign (|g|  1), we obtain the
following result at large bandwidth (presented with leading
logs in the first row, subleading logs in the second row, etc.):

I (T1, T2,V ) = 1

π
V

{
1 − 4

9π2

[
7

g2
− 16

π2g3
ln

2D

M
+ 64

π4g4
ln2 2D

M
− 2048

9π6g5
ln3 2D

M

−C1
16

π2g3
+ C1

128

π4g4
ln

2D

M
+ (4 − 12C1)

512

π6g5
ln2 2D

M

+ (3C2 + 6πC̃1 − 22π2)
16

9π4g4
+
(

32 − 8C2 + 16C1

−12πC̃1 + 11π2

)
64

9π6g5
ln

2D

M

+C4
1

g5
+ O

(
1

g6

)]}
, (6)

where the coefficients C1, C̃1, C2, and C4 are functions of
the ratios T1/V and T2/V (another function C3 appears in the
series for small g; see Supplemental Material [29]). In the case
of equal lead temperatures (T1 = T2), we find that the RG scal-
ing equation holds with β(g) = − 8

3π2 [1 + 32
9π2g + O(1/g2)]

and γ (g) = 256
27π4g3 [1 + 56

9π2g + O(1/g2)], and thus the fol-

lowing Kondo temperature T (F )
K = De− ∫ g dg′ 1

β(g′ ) for this
regime [35]:

T (F)
K ≡ De

3π2

8 g− 4
3 ln |g|. (7)

Notice that we can take the scaling limit D → ∞, g → −∞
with T (F)

K held fixed, indicating that the strong ferromagnetic
regime is universal.

Resumming the leading logs of the current series, we find
that the conductance approaches the unitarity limit asymptot-
ically at high voltage or temperature (Fig. 2):

G(T,V ) = G0

⎛⎝1 − 3π2

16 ln
√

T 2+V 2

T (F)
K

+ · · ·
⎞⎠. (8)

In analogy to the antiferromagnetic case, we expect that the
coefficient − 4

3 of ln |g| in Eq. (7) is affected by our cutoff
scheme; however, any change of this coefficient would only

affect higher-order corrections to Eq. (8). We expect that in the
first correction, the difference G is reliable (see the inset of
Fig. 2), as this quantity was verified in the antiferromagnetic
case.

Models with charge fluctuations. We briefly summarize
the results of applying our method to the interacting
resonant level model (IRL), HIRL = Hleads + εd†d +
Re{2√

[ψ†
1 (0) + ψ

†
2 (0)]d}+U [ψ†

1 (0)ψ1(0)+ψ
†
2 (0)ψ2(0)]

d†d , and the Anderson impurity model (AIM),
HAIM = Hleads + εd†

a da + Re{2√
[ψ†

1a(0) + ψ
†
2a(0)]da} +

Ud†
↑d↑d†

↓d↓ [where Hleads is the same kinetic term as in
Eq. (1), omitting the spin index in the IRL case]. Details of
our calculations are reported in Refs. [23,24].

In the IRL, we find the exact time-evolving wavefunction
after a quench that switches on ε, , and U at t = 0. We
evaluate the steady-state occupancy 〈d†d〉 to leading order
in U , and show that it is universal with the standard scale
T (IRL)

K ∼ D( 
D )

1/(1+U/π )
. In the equilibrium limit (i.e., zero

temperature and voltage), our result agrees with the Bethe
ansatz result from the literature [37] (see also Refs. [38,39]).
Out of equilibrium, we find that that the series in U breaks
down at a very large voltage V0 ∼ T (IRL)

K e2/(ρU ) (where ρ =
1/2π is the density of states per unit length). This scale V0

could also be significant in the lattice model if it lies in the
universal regime, i.e. if V0 � Dlattice.
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FIG. 2. The universal conductance G ≡ ∂Isteady state/∂V in the
strong ferromagnetic regime at leading log approximation. In con-
trast to the antiferromagnetic case in which G is known to reach
the unitarity limit G0 ≡ 2e2/h at T = V = 0 [36], here the unitarity
limit is reached asymptotically at large voltage or temperature. As
the external scale is lowered to T (F)

K and below, our series in 1/g
breaks down and another method is needed. Inset: The first correction
beyond leading logs in the quantity G ≡ G(T,V ) − G(T = 0,V )
for V  T (F)

K , with various values of T .

In the AIM, we calculate the NESS wavefunction directly
either for small U or infinite U . The small U expansion of
the steady-state current is found to be Is.s. = I (0)

s.s. + I (1)
s.s. + · · · ,

where I (0)
s.s. is the standard resonant level current and

I (1)
s.s. = U

82

∫ D

−D

dk1

2π

dk2

2π
[ f1(k1) + f2(k1)]

× [ f1(k2) − f2(k2)]|T (k1)|2|T (k2)|2 Re[T (k2)], (9)

where T (k) = 2/(k − ε + i) is the single-electron T ma-
trix of this model. We verify I (1)

s.s. by Keldysh perturbation
theory. For infinite U , we find an expansion for the steady-
state current in powers of , with the standard scaling
invariant εd ≡ ε + 

π
ln D


[1,40].

Discussion. We provided an exact, explicit solution for
the time-evolving wavefunction in the nonequilibrium Kondo
model. We obtained a series expression for the current which
can be expanded either for weak coupling or strong coupling,
and used it to explore another universal regime. It still should
be checked that this regime exists in the lattice model. To

FIG. 3. Kondo scaling picture. The two universal regimes are
weak antiferromagnetic bare coupling (0 < g � 1, TK = De−1/(2g))
and strong ferromagnetic bare coupling (g < 0, |g|  1, T (F)

K =
De−3π2 |g|/8). The former has been much studied, and the latter is
predicted by our calculations. In either case, the running coupling gR

is close to the bare coupling if the system is probed at a high energy
scale (high relative to TK or T (F )

K , though always small compared
to the bandwidth), and moves away from the bare coupling as the
energy scale is reduced.

see the predicted rise of the conductance towards the unitarity
limit, one would need a hierarchy of scales T (F)

K � V � Emax

or T (F)
K � T � Emax, where Emax is the energy scale beyond

which the Kondo model is no longer an accurate description
of the system.

We have the following picture of the RG flow in the strong
ferromagnetic regime (Fig. 3). Starting at the unstable fixed
point gR = −∞, the running coupling gR becomes smaller in
magnitude according to gR = − 8

3π2 ln T
T (F)

K

(at leading order).

As T approaches T (F)
K from above, |gR| becomes too small

for our calculation to be valid. We expect, though, that gR

continues to flow to the stable fixed point gR = 0− without any
other fixed points in between (much as the corresponding an-
tiferromagnetic flow from gR = 0+ to gR = ∞). The ground
state of the system would flow from a triplet at high energy,
with entropy ln 3, to a free spin at low energy, with entropy
ln 2.

It would be interesting to see if our method for calculating
local quenches and nonequilibrium steady states can be useful
in a wider class of problems. We note that the usual signatures
of integrability in the Kondo model, such as the Yang-Baxter
equation, do not appear in any obvious way in our calcula-
tions.
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