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Insulating regime of an underdamped current-biased Josephson junction
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We study analytically a current-biased topological Josephson junction supporting Zn parafermions. First, we
show that in an infinite-size system a pair of parafermions on the junction can be in n different states; the 2πn
periodicity of the phase potential of the junction results in a significant suppression of the maximum current Im

for an insulating regime of the underdamped junction. Second, we study the behavior of a realistic finite-size
system with avoided level crossings characterized by splitting δ. We consider two limiting cases: when the phase
evolution may be considered adiabatic, which results in the 2π periodicity of the effective potential, and the
opposite case, when Landau-Zener transitions restore the 2πn periodicity of the phase potential. We also study
the case with time-reversal symmetry and show that breaking this symmetry gives different phase periodicity
reductions. resulting current Im is exponentially different in the opposite limits, which allows us to propose
another detection method to establish the appearance of parafermions in the system experimentally, based on
measuring Im at different values of the splitting δ.
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Introduction. Topological superconducting systems have
recently attracted much attention both from a fundamen-
tal point of view and as possible platforms of a quantum
computer [1–3]. One of the effects, which may indicate
the topological properties of the system, is the fractional
Josephson effect [1,4–6]. In a trivial Josephson junction (JJ)
the low-energy properties (such as the Josephson current)
are determined by a 2π -periodic phase potential. The best
studied fractional Josephson effect is in junctions formed
by topological superconductors supporting Majorana bound
states (MBSs) [7–11]. In this case, the phase potential of the
system is 4π periodic due to the possibility of the coher-
ent transfer of a single electron as a result of the coupling
of the MBSs on the sides of the junction. However, it is
known that quasiparticle poisoning can spoil the 4π period-
icity, which is a potential problem for all systems hosting
MBSs [5,12–15]. Moreover, MBSs have Ising-type braid-
ing statistics, which is not sufficient for universal quantum
computation [3,16].

More exotic effects are predicted for systems with Zn sym-
metries (n > 2), where the domain walls between topological
and trivial phases host Zn parafermions (PFs) [17–34] with
more complex braiding statistics, which allows one to perform
an entangling gate and makes PFs computationally more pow-
erful than MBSs [35,36]. The effective state formed by a pair
of PFs carries a fractional charge 2e/n, which is robust against
extrinsic quasiparticles (integer-charge quasiparticles cannot
induce transitions between the n possible states of the system).
In general, the emergence of PFs is predicted for systems
with strong electron-electron interactions; a pair of PFs on
the junction sides enables the tunneling of 2e/n fractional
quasiparticles and, therefore, results in a 2πn periodicity in
the phase [18,20,23,29,35,37–40]. The Hamiltonian of such a

system takes the form

H = q2

2C
+ U (φ), [φ, q] = 2ei, (1)

where the first term corresponds to the charging energy: C
is the capacitance of the junction, and q is the charge on the
junction; U (φ) is the 2πn-periodic phase potential.

An experimental demonstration of parafermion edge states
presents a complex problem. However, recent experiments on
induced superconductivity in the edge states of systems with a
fractional quantum Hall effect (FQHE) seem to be promising
for this purpose [41–44]. A crossed Andreev pairing gap �c

across the superconductor separating two counterpropagating
edge states has been reported [42,44], which is supposed to be
sufficient for the formation of PFs [35].

We propose that for the direct observation of PFs one needs
to combine two such setups into an effective JJ (see Fig. 1),
so that the fractional Josephson effect can be observed. More-
over, we discuss a general experimental method to distinguish
topological JJs hosting PFs from nontopological ones, based
on the properties of an underdamped JJ, which depends cru-
cially on the periodicity of U (φ). Compared to JJs hosting
MBSs [45], systems hosting PFs are much more complex,
which, however, opens up ways to reduce phase periodicity
and detect such exotic bound states. Moreover, the observation
of these effects can be even more feasible than for MBSs due
to the intrinsic insensitivity to quasiparticle poisoning.

We start with a general model of a JJ hosting Z3 or Z4 PFs
on the junction sides. We discuss the voltage peak Vm = RIm

in the I-V characteristics of such a device, shunted by a large
resistance R and biased by a current. This peak corresponds to
a transition from an effectively insulating to a conducting state
[46–48]; its magnitude depends on the tunneling amplitude
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between the minima of the phase potential, therefore, the 2πn
periodicity plays a crucial role. Moreover, if one can control
the transitions between the n possible states of a PF pair on
the junction (i.e., tuning the splitting δ at avoided crossings by
changing the applied magnetic field [49]), one can effectively
change the periodicity of the potential and, as a result, control
the value of Vm. In our work, we consider the temperature to
be low enough, i.e., T � ω0, with ω0 being the level spacing
in the minima of the phase potential U (φ), to ignore thermal
fluctuations, which, in general, would result in smoothening
of the voltage peaks.

Z3 case. A pair of Z3 PFs coupled via a JJ allows the trans-
port of 2e/3 fractional quasiparticles through the junction. As
a result, the phase potential of the junction takes the form
[20,21,26]

U (φ) = −EJ cos φ − E2e/3 cos

(
φ − 2πm

3

)
, (2)

where E2e/3 is the PF coupling amplitude, which governs
fractional quasiparticles tunneling; m ∈ {0, 1, 2} corresponds
to one of the three states of the tunnel-coupled PF pair; and
EJ corresponds to Cooper-pair tunneling through the junction.
We consider the regime of a well-defined phase, i.e., Ec =
e2

2C � EJ , and we assume the trivial Josephson tunneling to
be dominant, EJ � E2e/3. The lowest-energy band dispersion
takes the form [46,47,50]

E (0)(k) = ω0

2
− 2ν6π cos (6πk), (3)

where ω0 ≈ √
8EJEc(1 + 1

18
E2e/3

EJ
) is the harmonic frequency

for the low-energy bands, and ν6π is the amplitude for 6π

tunneling between the ground states in the absolute minima
of U (φ). The tunneling amplitude for the topological junction
is given by [50]

ν6π =
√

3
4Ec√

π

(
2EJ

Ec

)3/4

e−S6π , (4)

where

S6π = 3S0

(
1 +

[
1 + ln

16EJ

3E2e/3

]
E2e/3

8EJ

)
. (5)

It is convenient to compare it to the amplitude of 2π tunneling
in a trivial junction [46,51]:

ν0 = 4Ec√
π

(
2EJ

Ec

)3/4

e−S0 , S0 =
√

8EJ/Ec. (6)

The tunneling amplitude ν6π is sufficiently smaller than ν0 due
to a factor of 3 in the exponent (S0 � 1).

If we now consider a system consisting of such a junc-
tion with a large shunting resistance (underdamped junction),
R > RQ = 2π/(2e)2, and apply a current, the junction would
be in an effectively insulating regime up to some maximum
value of the applied current Im, determined by the dispersion
of the lowest band [46,47], which can be seen as a sharp
voltage peak Vm = RIm. The value of this current depends on
the bandwidth 4ν6π and is given by [50]

I6π
m = e96

√
3πEc

(
2EJ

Ec

)3/4

e−S6π
RQ

R
. (7)

FIG. 1. Schematic representation of the FQHE stucture. Narrow
superconducting strips (blue) induce pairing of amplitude �c be-
tween counterpropagating FQHE edge states. Two strips placed close
to each other form an effective JJ, and a pair of Zn parafermions
on the junction forms a channel for 2e/n fractional quasiparticles
tunneling between the superconducting strips along with ordinary
Cooper pairs of charge 2e.

The result is modified in the case of nonzero population of
the excited band [50], however, it still holds the exponential
dependence on the reduced phase periodicity.

Finite-size effects may lift the degeneracy between the
ground states and result in transitions between the three pos-
sible states of the PF pair on the junction. In particular, the
overlap with PFs localized on the outer sides of the topo-
logical system [49] plays a crucial role. A similar effect has
been discussed before for a JJ hosting MBSs [52,53]. The
resulting spectrum of a three-level system formed by a pair
of PFs localized on the sides of the junction has avoided
level crossings at πn: with energy splitting 2δ [at π (2n + 1)]
and 2δ′ (at 2πn) (see Fig. 2). Away from the avoided level
crossings each branch consists of one of the three states with
energy −E2e/3 cos ([φ − 2πm]/3), where m labels the state; at
avoided level crossings the state is given by a superposition of
two states with different m’s. If δ is small (δ � E2e/3) and can
be treated perturbatively, the ground state energy is given by

Eg ≈ minm

{
−E2e/3 cos

(
φ − 2πm

3

)}
. (8)

As we consider δ � E2e/3, we have neglected the corrections
to the energy at the avoided crossing points. In the adiabatic
limit (discussed in detail below), the phase potential of the
topological JJ is given by U (φ) ≈ −EJ cos φ + Eg, which is
2π periodic. We can calculate the instanton action for a 2π

phase slip in a topological junction (it is different from the

FIG. 2. The spectrum of a three-level system, formed by a pair
of localized Z3 PFs with degeneracy lifting due to finite-size effects
of overlapping PFs.
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nontopological action S0 due to the E2e/3 term):

S2π = S0

(
1 + 3

8

[
2 arcoth

√
3 − ln 3

]E2e/3

EJ

)
. (9)

The resulting tunneling amplitude takes the form

ν2π = 4Ec√
π

(
2EJ

Ec

)3/4

e−S2π . (10)

And, finally, we can calculate the maximum value of the
current for the insulating regime:

I2π
m = e32

√
πEc

(
2EJ

Ec

)3/4

e−S2π
RQ

R
. (11)

As one can see from Fig. 2, the above analysis is valid, if the
phase dynamics may be considered adiabatic in comparison
to the dynamics of the state formed by a pair of localized
PFs. That means that as long as we can neglect Landau-Zener
transitions (LZTs) at φ = 2π (2n + 1), the effective potential
is determined by the ground state energy of the topological
junction for the fixed phase Eg − EJ cos φ. The probability of
LZT is given by

PLZ = exp

(
− 2πδ2

φ̇E2e/3

)
≈ exp

(
− δ2

ν2π E2e/3

)
. (12)

Then, if δ � δ2π = √
ν2πE2e/3, we can neglect LZTs and as-

sume the potential to be effectively 2π periodic. In the limit
δ � δ6π = √

3ν6π E2e/3 (the factor 3ν6π arises from a new
characteristic velocity for phase evolution due to 6π tunnel-
ing: φ̇ = 6πν6π ), we come back to the 6π periodicity and to
the result given by Eq. (7). In principal, δ′ may be different
from δ (see Fig. 2), however, the difference between them
is not essential as long as δ is smaller than the characteristic
energy scales, δ′ = δ[1 + O(δ/E2e/3)]. As a result, if one can
control δ, one can switch the system from an effectively 6π

to an effectively 2π state, which should be observable as a
drop in the voltage peak Vm = RIm and indicate the presence
of PFs in the system. Moreover, as it was shown in Ref. [49]
and before for systems hosting MBSs [54–56], the splitting
is oscillating around zero as a function of the chemical po-
tential and the applied magnetic field. The latter is easy to
control experimentally, while varying it changes other energy
scales of the junction, such as EJ or Ec, very slowly and
monotonically. As a result, the value of the peak Vm = RIm

changes between two exponentially different values, given by
Eqs. (7) and (11), if one varies the applied magnetic field.
Strictly speaking, for any nonzero δ, there are all possible 2π l
tunnelings with integer l . Moreover, for l � 3 there are several
different tunneling processes, as there can be several different
effective potentials, i.e., 6π tunneling can either be with four
LZ transitions or only with two transitions (staying at the
same branch three times at avoided crossings). However, the
probability of each such tunneling decays exponentially with
δ for any l > 1. Therefore, for δ � δ6π/2 the 2π -periodic
contribution dominates, which gives (see Fig. 3)

Im ≈
[

1 − exp

(
− δ2

ν2π E2e/3

)]
I2π
m . (13)

FIG. 3. The dependence of the maximum current Im on the split-
ting δ. The blue line indicates the 2π -periodic contribution [see
Eq. (13)], which is suppressed for small δ. The total Im (red line,
hand-drawn) starts at I6π

m and merges with I2π
m at δ � δ6π/2. The

parameters used: ν6π = 0.01ν2π .

Z4 case. The above analysis can also be performed for Z4

PFs. A pair of Z4 PFs localized on the sides of a junction
results in the phase potential [18,37,38,40,57]

U = −EJ cos φ −
2∑

n=1

Ee/n cos

(
φ − 2πm

2n

)
. (14)

Ee represents single-electron tunneling, Ee/2 stands for the
tunneling of e/2 fractional quasiparticles, and m ∈ {0, 1, 2, 3}
indicates one of the four possible states of the PF pair;
EJ is a trivial Josephson energy. In several theoretical
works [29,40], the Cooper-pair tunneling was predicted to
be dominating, i.e., EJ � Ee, Ee/2. The harmonic frequency,
determining the lowest-energy bands, is given by ω0 ≈√

8EJEc(1 + Ee
8EJ

+ Ee/2

32EJ
). With the assumptions taken above,

we calculate the instanton action for tunneling between the
lowest minima of the phase potential (expansion in Ee/EJ and
Ee/2/EJ ):

S8π = 4S0

[
1 + 1

8

(
1 + ln

16EJ

Ee

)
Ee

EJ

+ 1

8

(
1 + ln

29/2EJ

Ee/2

)
Ee/2

EJ

]
. (15)

As a result, we can derive the current Im at which the junction
switches from an insulating to conducting state:

I8π
m = e256

√
πEc

(
2EJ

Ec

)3/4

e−S8π
RQ

R
. (16)

Finite-size effects play exactly the same role as in the case
of Z3 PFs. By varying an applied magnetic field, one would
tune the overlap with PFs on the outer edges of the system
[49], which can drive the system to an effectively 2π -periodic
state with a result similar to Eq. (11) (with additional paramet-
rically small corrections in the tunneling action). However,
it is also possible to get a more sophisticated phase pe-
riodicity reduction. Some systems hosting Z4 PFs possess
time-reversal symmetry (TRS) [18,40] (without a magnetic
field). If one applies a local magnetic field, the TRS is broken,
which results in the lifting of Kramers degeneracy. We can
consider the splitting δ to be small in comparison to the energy
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FIG. 4. The spectrum of a system with TRS formed by a pair of
localized Z4 PFs: (a) with Ee = 0 and (b) with Ee = 2Ee/2. Solid and
dashed lines correspond to states with opposite fermion parity. The
Kramers degeneracy at 2πn is lifted due to TRS breaking, while the
rest of the crossings survive, being protected by fermion parity. As a
result, the ground state is either given by the blue or green branch.

scales Ee and Ee/2. Then, for a fixed phase the energy of the
ground state, formed by a pair of Z4 PFs, is given by (green
branch in Fig. 4)

Eg = −Ee cos (φ/2) −
√

δ2 + E2
e/2 cos2

φ

4

≈ −Ee cos (φ/2) − Ee/2 maxm cos
φ − 4πm

4
. (17)

We note that only Kramers degeneracies at 2πn are lifted
due to broken TRS, and all the other crossings remain, as
they are protected by fermion parity conservation (finite-size
effects being neglected) [18,40]. If LZT can be neglected
(condition given below), the phase potential of the JJ is U =
−EJ cos φ + Eg, which allows us to calculate the instanton
action for tunneling between the lowest minima:

S4π = 2S0

[
1 + 1

8

(
1 + ln

16EJ

Ee

)
Ee

EJ

+ 1

16

(
1 + ln

8EJ

E2/3

)
Ee/2

EJ

]
. (18)

From this we can determine the critical current for the insulat-
ing regime,

I4π
m = e64

√
2πEc

(
2EJ

Ec

)3/4

e−S4π
RQ

R
. (19)

As long as δ � δ4π = √
2ν4πEe/2 (negligible LZT), the above

assumption is valid, while in the limit δ � δ8π = √
4ν8π Ee/2

the LZT probability is almost unity, which allows us to
treat the phase potential as effectively 8π periodic [and repro-
duce the results derived above in the absence of degeneracy
lifting; see Eq. (16)]. The splitting δ is controlled by the

local magnetic field, and in this case the dependence is
monotonic—the larger the field, the larger is δ.

Discussion and conclusions. The above analysis provides a
promising method to establish the presence of PFs in systems
that are expected to support these exotic topological bound
states. The method consists of measuring the I-V characteris-
tics of the current-biased junction in an underdamped regime
at different values of splitting δ at avoided crossings. As
shown in Ref. [49], the splitting due to the finite-size effect is
oscillating around zero as a function of magnetic field (similar
to junctions supporting MBSs [52,53]). As a result, if the mag-
netic field is varied, the system oscillates between the regimes
of low and high LZT probabilities with significantly different
values of the peak Vm = RIm (due to different effective peri-
odicities of the phase potential). Moreover, for systems with
TRS (without a magnetic field) one can switch to a state with
reduced periodicity applying local magnetic fields (δ is mono-
tonically increasing with the field). An underdamped regime
of a Josephson junction with EJ � Ec, which is crucial to
observe effects caused by quantum phase fluctuations, is tech-
nically challenging, but nevertheless possible with the proper
choice of an environment with high impedance [58–60]. The
results obtained here may be generalized to systems hosting
Zn PFs with any integer n. The voltage peak will be at

Im = e32
√

πn3/l3Ec

(
2EJ

Ec

)3/4

e−S2πn/l
RQ

R
, (20)

where l < n is the reduced periodicity factor arising from
finite-size effects or TRS breaking. The generalized formula
is valid as long as the Cooper-pair tunneling is dominating
over any fractional quasiparticle tunneling. The tunneling ac-
tion is given by S2πn/l = nS0/l + · · · , where the correction
is determined by the terms corresponding to fractional quasi-
particle tunneling. Thus, Im changes significantly if l goes
from l = 1 (negligible splitting) to l > 1. This nonmono-
tonic behavior of Im is specific only for topological junctions,
which provides a straightforward way to distinguish a junction
hosting Majorana fermions [45] or parafermions. The latter
may have additional symmetries (such as TRS), which allow
more complicated mechanisms for reducing phase periodic-
ity and, therefore, richer phenomena, which can be observed
experimentally.
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