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Toroidal nonreciprocity of optical second harmonic generation
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We demonstrate mechanisms of reciprocity breaking in nonlinear optics driven by the toroidal dipole moment
which characterizes nontrivial spatial distributions of spins in solids. Using high-resolution femtosecond spec-
troscopy at electronic resonances in the magnetoelectric antiferromagnet CuB2O4, we show that nonreciprocity
reaches 100% for opposite magnetic fields due to the interference of nonlinear coherent sources of second har-
monic generation originating from the toroidal dipole moment, applied magnetic field, and noncentrosymmetric
crystal structure. The experimental results are corroborated by theoretical analysis based on the crystal and
magnetic symmetry of CuB2O4. Our findings open degrees of freedom in nonlinear optics and pave the way for
future nonreciprocal spin-optronic devices operating on the femtosecond timescale.
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The Lorentz reciprocity principle is a fundamental concept
that governs light propagation in optically linear media in
the absence of magnetic fields [1–3]. In nonlinear optics, the
principle of reciprocity is not valid even in the absence of
a magnetic field [4,5]. A bunch of nonlinear nonreciprocal
effects can become especially diverse for the structures with
broken spatial inversion symmetry and nontrivial spin order.
Despite rapid recent progress, many novel light-matter cou-
pling effects enabled by the interplay of nonlinearity, external
magnetic fields, and nontrivial spin order can be still envis-
aged [6–9].

Here, we demonstrate experimentally widely tunable
nonlinear nonreciprocity due to interference of symmetry-
different optical second harmonic generation (SHG) sources
induced by a toroidal dipole moment T , an applied mag-
netic field B, and noncentrosymmetric crystal structure. The
toroidal dipole moment for a localized distribution of spins
S j can be written as T = 1

2

∑
j r j × S j and can be viewed

as a magnetoelectric dipole moment in addition to the elec-
tric and magnetic dipoles [10]. It changes sign under both
space inversion and time-reversal symmetry operations. The
rigorous generalization of the toroidal dipole moment for infi-
nite crystals was recently presented in Ref. [11]. Currently,
the toroidal order is attracting tremendous attention across
the disciplines ranging from high-energy physics [12], spin
physics of multiferroics and magnetoelectrics [7,11,13–20] to
nanoscale optics [21]. However, the role and manifestations
of the toroidal moment in the SHG processes have never been
reported, to the best of our knowledge.

For solving these tasks, we have chosen an antifer-
romagnet CuB2O4 which belongs to the promising class
of magnetoelectric and multiferroic materials with poten-
tially important practical applications [22–25]. This crystal
possesses a favorable combination of noncentrosymmet-
ric crystal structure [26], commensurate and incommensu-
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rate types of antiferromagnetic spin ordering [27,28]. In
particular, it demonstrates exceptionally narrow optical res-
onances [29–31] which provide rich opportunities for the
studies of symmetry-different contributions to the SHG pro-
cesses. All these factors open up yet unexplored possibilities
for disclosing new mechanisms of SHG nonreciprocity on the
spectroscopic level but not only at a single wavelength when
different mechanisms may overlap becoming indistinguish-
able. Here, we focus on the SHG at the 1.405 eV electronic
resonance [Fig. 1(a)] at the crystal-field-split 3d9 states of
the Cu2+ ions [29,30,32]. While SHG at this transition was
observed before [29,32], neither the SHG nonreciprocity nor
SHG fine structure and involved mechanisms have been stud-
ied or analyzed so far. We are confident that our experimental
results provide a solid basis for revealing the complex nature
of the SHG nonreciprocity at the microscopic level.

In this Letter we report on the SHG nonreciprocity due
to the nonlinear coupling of coherent light with commen-
surate and incommensurate spin structures formed by spins
S = 1

2 of Cu2+ ions [27,28]. The nonvanishing antiferromag-
netic L± = ±(S1 − S2) and ferromagnetic M± = ±(S1 + S2)
order parameters characterize the two types of antiferro-
magnetic domains in the commensurate phase, respectively
[27]. Crucially, the commensurate antiferromagnetic phase
carries not only the order parameter L but also a nonzero
toroidal dipole vector, described in detail in the Supplemental
Material (SM) [33]. The behavior of the toroidal vector is
dictated by the antiferromagnetic moment, T ∝ Lx ŷ + Lyx̂. In
the considered commensurate phase when L is along [110]
Lx = ±Ly, so T ‖ L. When the magnetic field is applied, the
CuB2O4 possesses the time-noninvariant toroidal (T ‖ L) and
magnetic-field-induced (B) SHG sources which are also com-
plemented by the time-invariant crystallographic (C) SHG
source due to the noncentrosymmetric crystal structure. Under
certain conditions, these sources can interfere constructively
or destructively as shown schematically in Fig. 1(a). One can
achieve full control of nonreciprocity by changing the direc-
tion and magnitude of the applied magnetic field. Obviously,
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FIG. 1. (a) Coherent SHG processes at the optical transition
within the Cu2+ ions near 1.405 eV between the ground and the
lowest excited states when the two Eω photons are converted into a
single E 2ω photon. The vertical (T ‖ L), (B), and (C) lines mark the
SHG sources due to the toroidal, magnetic-field-induced, and crystal-
lographic sources which can interfere constructively or destructively
as indicated by the ± signs. (b) A crystallographic unit cell of tetrag-
onal CuB2O4 with antiferromagnetic spins oriented along the [110]
axis in the commensurate state. At equilibrium, the antiferromagnetic
moment L = S1 − S2 and the toroidal moment T are collinear and
are also aligned along the [110] axis.

the interference of these and other SHG sources, for example
those due to quadrupole and magnetic dipole sources allowed
in centrosymmetric materials, is not limited to CuB2O4, but
can be regarded as a new concept for magnetic routing of the
nonlinear coherent emission in complex media.

For experimental detection of SHG processes and dis-
tinguishing different nonreciprocal contributions we used a
spectroscopic technique based on wavelength tunable fem-
tosecond laser with pulses at the 30 kHz repetition rate [40].
This technique provides high sensitivity and high spectral
resolution, limited only by the spectrometer for dispersing
the signals as described in Sec. S1 in the SM [33]. The
method was applied to the (xz)-plane single-crystal CuB2O4

sample with the incident and SHG light propagating along
the y axis, k ‖ y. The crystallographic unit cell of tetrago-
nal CuB2O4 with lattice parameters a = b �= c [26], where

a ‖ x, b ‖ y, z ‖ c is shown in Fig. 1(b). For more de-
tails about CuB2O4 crystal symmetry see Sec. S2 in the
SM [33]. The covered temperature range 1.9–25 K includes
several phase transitions between commensurate and in-
commensurate antiferromagnetic spin structures, as well as
the antiferromagnetic–paramagnetic phase transition at TN =
20 K [28]. The magnetic field B up to ±10 T was applied
along the x and z crystal axes in the two Voigt geometries,
k ⊥ B, that allowed us to test the symmetry-different mani-
festations of SHG toroidal nonreciprocity related to notably
different magnetic phase diagrams [28,33]. SHG rotational
anisotropies were measured for the crossed Eω ⊥ E2ω and
parallel Eω ‖ E2ω light polarizations as a function of the Eω

polarization angle. Experimental rotational anisotropies were
fitted using appropriate equations derived on the basis of the
crystallographic and magnetic symmetry of CuB2O4 that al-
lowed us to distinguish symmetry-different contributions to
the SHG (see Sec. S3 in the SM [33]).

Figure 2(a) shows the SHG spectra at T = 4.0 K in op-
posite magnetic fields ±8 T applied along the x axis when
the antiferromagnetic structure is commensurate. The high-
est SHG intensity is observed at the 1.4047 eV line in the
Eω ⊥ E2ω polarization configuration and for the azimuthal
angle φ = 0◦ corresponding to E2ω ‖ B ‖ x. The spectra are
divided into the two Frenkel groups of sharp lines at 1.4047–
1.4049 eV (G1) and 1.4062–1.4063 eV (G2) with full widths
at half maximum (FWHM) below 100 μeV. Observation of
small splittings on the order of 0.5 meV within each group
demonstrates the advantages of the femtosecond-pulse tech-
nique providing high spectral resolution. Previous studies
of SHG in CuB2O4 with the use of the nanosecond-pulse
technique did not resolve the two Frenkel components [29].
Additionally, the G1 and G2 groups are separated by the
Zeeman splitting of about 1.5 meV at Bx = 8 T. The main
result shown in Fig. 2(a) is the strong difference between the
SHG spectra for opposite ±8 T magnetic fields marked by
black and red symbols and lines. That is an unequivocal proof
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FIG. 2. Nonreciprocal SHG spectra of CuB2O4 (xz-plane sample) at (a) T = 4.0 K and (b) T = 12.5 K measured at normal incidence
k ‖ y, Eω ‖ z, Eω ⊥ E2ω, B = ±8 T ‖ x. SHG spectra at T = 4.0 K for opposite fields demonstrate strong spectrally varying nonreciprocity
achieving almost 100% for some lines, e.g., for the 1.4062 eV line. When the temperature is increased from T = 4.0 to 12.5 K, the SHG
intensity decreases by about an order of magnitude but the nonreciprocity remains well pronounced. Blue and yellow insets show rotational
anisotropy diagrams for the two G1 and G2 SHG groups for opposite magnetic fields, respectively.
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of giant SHG nonreciprocity whose degree varies for different
lines and approaches 100% at some photon energies, e.g., for
the 1.4062 eV line. As the temperature is raised up to 12.5 K
[Fig. 2(b)], the SHG lines broaden, but the splitting into two
groups and the nonreciprocity remain well pronounced.

The SHG nonreciprocity is further confirmed by the rota-
tional anisotropy diagrams [see insets to Figs. 2(a) and 2(b)]
for the two polarization configurations Eω ⊥ E2ω (magenta
symbols) and Eω ‖ E2ω (blue symbols). We note that the dia-
grams for opposite fields at T = 4.0 and 12.5 K are similar for
the G1 group of lines but very different for the G2 group. All
these particular features of diagrams give us an opportunity to
analyze contributions to SHG as discussed in Sec. S3 in the
SM [33].

The crystallographic SHG vanishes at normal incidence
and we explain the observed SHG nonreciprocity in the B ‖
x geometry by taking into account the interference of the
two SHG sources due to the applied magnetic field, E2ω

x ∝
(Eω

z )2Bx and the toroidal moment T , E2ω ∝ (Eω
z )2T . The

interference results in nonreciprocal SHG as

|E2ω(B)|2 − |E2ω(−B)|2 ∝ BxTx

∣
∣Eω

z

∣
∣4

. (1)

We note that this equation is valid only in the commensurate
magnetic phase because in the incommensurate phase the
toroidal moment vanishes. The toroidal moment T in CuB2O4

in zero field is aligned with the [110] axis [27,33]. More
formally, in the given geometry the observed SHG is due
to the nonlinear magnetoelectric susceptibility CL

xzzy = CL
yzzx,

and nonlinear magnetic-field-induced susceptibility CB
xzzx =

−CB
yzzy tensor components introduced in Sec. S2 in the SM

[33].
Detailed analysis of rotational anisotropies in Figs. 2(a)

and 2(b) shows that Eq. (1) being derived only in the electric-
dipole approximation is not sufficient to obtain unambiguous
fittings and indicates the presence of other nonreciproc-
ity mechanisms. In fact, the noncentrosymmetric crystal
structure of CuB2O4 allows for both electric-dipole and
magnetic-dipole SHG contributions. For fitting data in insets
in Figs. 2(a) and 2(b) we used Eq. (S18) and numerical re-
sults are listed in Table III in the SM [33]. The rotational
anisotropies at T = 4.0 K are mostly governed by the electric
dipole terms as expressed by Eq. (1). This is solid evidence
of the dominant magnetotoroidal electric dipole SHG nonre-
ciprocity at this temperature. However, the data at T = 12.5 K
clearly indicate a notable magnetic dipole contribution to the
SHG, which leads to the azimuthal rotation of anisotropy
diagrams around the y axis in the insets to Fig. 2(b). It is clock-
wise for G1 and counterclockwise for G2 lines. Evidently, a
microscopic theory is required for explaining these important
and interesting results, but this task is beyond the scope of our
Letter.

According to the magnetic phase diagrams discussed in
several publications [27,28,32], the orientation of the T ‖ L
vectors is sensitive to the direction and magnitude of the
applied magnetic field in the (xy) plane. Indeed, while at zero
field these vectors are directed along the easy [110] axis,
when the Bx field is increased, they gradually rotate toward
the y axis overcoming the magnetic anisotropy and resulting
in modification of the SHG response.

-8 -4 0 4 8

0.0

0.2

0.4

0.6

0.8

1.0

-8 -4 0 4 8

0.00

0.02

0.04

0.06

0.08

0.10

CICC

1.4048

1.4063

T = 4.0 K(a)

1.4062

-1.7 T 1.7 T

S
H

G
p
ea

k
in

te
n
si

ty
(a

rb
.

u
n
it

s)

C

1.4048

T = 12.5 K

+0.03 T-0.03 T

+
0

.2
T

-0.2 T
1.4048

(b)

1.4059

1.4061

Magnetic field B (T)

C

FIG. 3. Magnetic field dependencies (B ‖ x) of the SHG at
(a) T = 4.0 K and (b) T = 12.5 K. Purple and yellow/blue regions
correspond to incommensurate (IC) and commensurate (C) magnetic
phases shown schematically on the basis of Refs. [28,38]. The num-
bers on the lines indicate energy of the SHG lines. Note the scale
difference by an order of magnitude in panels (a) and (b).

An important result is shown in Fig. 3(a) where no SHG
signals are detected in the incommensurate phase (purple
region) where the toroidal moment vanishes but are readily
observable in the commensurate phases (yellow and blue
regions). According to the neutron diffraction studies [27],
the incommensurate antiferromagnetic structure of CuB2O4

can be described as the rotation of the L vector in the (xy)
plane, while propagating along the z axis when the orientation
distribution of T ‖ L vectors is not defined. As a consequence
of such spin distribution, the SHG signals disappear. The SHG
signal jumps from zero to finite values only when the phase
boundary between the incommensurate and commensurate
phases is crossed [Fig. 3(a)] and then it changes strongly with
growing magnetic field.

Field dependencies of SHG at T = 4.0 K [Fig. 3(a)] and
12.5 K in the commensurate phase [Fig. 3(b)] are drastically
different. The SHG intensity is decreased by about a factor
of 10 (compare the intensity scales in both figures). In the
incommensurate phase the SHG signal is fully suppressed,
but it is readily observed in the commensurate phase in fields
larger than ±0.03 T. We suppose that these field values cor-
respond to the disappearance of antiferromagnetic domains.
The SHG field dependencies are strongly nonreciprocal and
each line demonstrates specific behavior. Pronounced temper-
ature changes of the rotational anisotropies are observed when
comparing the insets in Figs. 2(a) and 2(b). These intriguing
effects require a detailed microscopic analysis which is be-
yond the scope of our Letter.

Figure 4(a) shows the SHG results at T = 12.5 K for
the opposite magnetic fields B = ±5 T applied along the
tetragonal z axis, B ‖ z, and the results are radically dif-
ferent from those for the B ‖ x geometry of Fig. 2(b). In
both these cases CuB2O4 is in the commensurate phase and
the spectra are composed of the two G1 and G2 Frenkel
groups. The strongest SHG signals are observed for the Eω ‖ z
and E2ω ‖ x orthogonal polarizations, respectively. However,
in striking contrast to the B ‖ x geometry where the SHG
nonreciprocity reaches values as high as 100% for opposite
field directions, in the B ‖ z geometry the SHG spectra are
exactly identical for opposite fields and no nonreciprocity
is detected. Since the crystallographic SHG contribution [C
type in Fig. 1(a)] vanishes at normal incidence, k ‖ y, the
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FIG. 4. SHG spectra of CuB2O4 at (a) normal incidence k ‖ y in the Voigt geometry, Eω ‖ z, Eω ⊥ E2ω, B = ±5 T ‖ z and for the sample
rotated by 5◦ in (b) positive and (c) negative directions around the x axis. The left inset to (a) shows SHG rotational anisotropy of the G2
peak for Eω ⊥ E2ω (magenta symbols) and Eω ‖ E2ω (blue symbols) and these anisotropies are similar for (b) and (c). Magnetic field SHG
dependencies for the G2 peak shown in the right insets in (a), (b), and (c) figures are radically different in all three cases.

observed SHG spectra in Fig. 4(a) should be assigned to the
antiferromagnetic/toroidal order parameter L ‖ T . In partic-
ular, at normal incidence [Fig. 4(a)], k ‖ y, B ‖ z, Eω ‖ z,
and E2ω ‖ x, the SHG signal is induced by the only con-
tribution P2ω

x = CL
xzzyEω

z Eω
z Ly ∝ CL

xzzyEω
z Eω

z Tx where Ci jkl are
the relevant tensor components for nonlinear susceptibilities
(see Sec. S2 in the SM [33]). Thus, no interference and no
nonreciprocity are allowed since the detected SHG intensity
I2ω ∝ (P2ω

x )2 while the other SHG contributions are symmetry
forbidden. In contrast to the well-pronounced field dependen-
cies in Fig. 3(b), no field dependence is observed above the
saturation field, as the right inset to Fig. 4(a) shows.

Following the fundamental rule that symmetry break-
ing can reveal new effects, we conducted experiments not
only at normal incidence discussed above when magnetic-
field-induced and crystallographic SHG contributions are
symmetry forbidden, but also at oblique incidence when these
contributions become allowed. The (xz) sample was rotated
around the x axis by an angle of ±5◦ while keeping unchanged
the magnetic field and the incident/SHG light propaga-
tion directions, B ⊥ k. Under such rotations, the collinear
incident/SHG wave vectors k do not exactly coincide with
any of the x, y, or z axes. As a result, the SHG emission
changes dramatically but in a different way for positive and
negative sample rotation, as demonstrated in Figs. 4(b) and
4(c), respectively. A strong increase of the SHG intensity
by about a factor of 5 is clear evidence of activation of the
crystallographic SHG.

Namely, at oblique incidence both Eω
y �= 0 and Eω

z �= 0 and
therefore the crystallographic polarization P2ω

x = CxyzEω
y Eω

z
becomes nonzero. The strongly asymmetric SHG spectra
for positive and negative sample rotations [see Figs. 4(b)
and 4(c)] immediately remind one of the Fano-type res-
onance [41–43]. It arises from the interference of the
spectrally broad crystallographic SHG with the narrow res-
onant antiferromagnetic/toroidal SHG P2ω

x = CL
xzzyEω

z Eω
z Ly.

Remarkably, the Fano asymmetry is inverted not only with
the opposite sample rotations, but also for opposite mag-
netic fields thus evidencing the magnetic nonreciprocity. Since

multiple magnetic-field-induced SHG sources become acti-
vated at the oblique incidence, it is challenging to pinpoint
a specific single symmetry-allowed term responsible for
the nonreciprocity observed in Figs. 4(b) and 4(c). One of
such terms could be of the magnetic-dipole type P2ω

x ∝
kyEω

z Eω
z By that was discussed above when analyzing rota-

tional anisotropies in insets to Figs. 2(a) and 2(b). This
contribution becomes nonzero when the sample is tilted due to
By �= 0. Its sign changes for opposite magnetic fields resulting
in SHG nonreciprocity.

It was a challenging task to make sure whether the
SHG nonreciprocity survives when the T ‖ L source van-
ishes above TN = 20 K. In fact, experiments showed that
nonreciprocity in opposite fields B = ±10 T can be reliably
detected both at the normal incidence solely due to the applied
field, as well as in the tilted samples due to interference of
crystallographic and magnetic field sources (see Sec. S4 in
the SM [33]).

In conclusion, we have demonstrated resonant SHG non-
reciprocity in magnetoelectric antiferromagnet CuB2O4 using
high-resolution femtosecond spectroscopic technique. The en-
tirety of the results on spectral, magnetic field, temperature,
and rotational anisotropy studies provided unambiguous ev-
idences of nonreciprocity mechanisms related to the toroidal
dipole moment which interfere with the applied magnetic field
and crystallographic SHG sources. The SHG nonreciprocity
was readily observed in the commensurate antiferromagnetic
phases where the toroidal order parameter is strictly defined.
In contrast, no SHG signal was observed in the incommen-
surate antiferromagnetic phases in which the toroidal order
is destroyed. Analysis of the rotational anisotropy of SHG
reveals both electric- and magnetic-dipole contributions, with
the electric-dipole contribution being dominant at lower tem-
peratures. Owing to the abilities of the femtosecond technique
to observe fine structure of electronic transitions, our studies
showed that CuB2O4 is a very fruitful platform for exploring
various mechanisms of resonant and nonresonant nonlinear
nonreciprocity. Obviously, such approach can be generalized
to many other magnetic materials. Nonreciprocal effects, both
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linear and nonlinear, are not only efficient tools for studies of
electronic and magnetic structures of materials but are very
promising for constructing novel nonreciprocal optical and
microwave devices. In particular, these effects open up possi-
bilities for the emerging field of antiferromagnetic spintronics
and spin optronics [44–47].

Note added. Recently, we became aware of a paper on a
similar study by S. Toyoda et al. [48]. We note that the results
reported in this study have been obtained under notably differ-
ent experimental conditions such as temperature and magnetic
field range, as well as with different spectral resolution.
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