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Essential role of the anisotropic magnetic dipole in the anomalous Hall effect
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We theoretically investigate the anomalous Hall effect (AHE) that requires neither a net magnetization nor
an external magnetic field in collinear antiferromagnets. We show that such an emergent AHE is essentially
caused by a ferroic ordering of the anisotropic magnetic dipole (AMD), which provides an effective coupling
between ordered magnetic moments and electronic motion in the crystal. We demonstrate that the AMD is
naturally induced by the antiferromagnetic ordering, in which the magnetic moments have a quadrupole spatial
distribution. In view of the ferroic AMD ordering, we analyze the behavior of the AHE in the orthorhombic
lattice system, where the AHE is largely enhanced by the large coupling between the AMD and the spin-orbit
interaction. From these findings, the AMD can be used as a descriptor in general to investigate the ferromagnetic-
related physical quantities in antiferromagnets including noncollinear ones, which are detectable by using the
x-ray magneto-circular dichroism.
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Anomalous Hall effect (AHE) is one of the fundamental
physical responses in condensed matter physics [1–3]. Al-
though the AHE was originally discussed in ferromagnets
with the spin-orbit interaction [4–10], it is an up-to-date sub-
ject as it has also been observed in the noncollinear [11–15]
and noncoplanar antiferromagnets [16–19] even with a neg-
ligibly small magnetization. In any case, the Berry curvature
generated from the effective hoppings on a closed loop plays a
role of an emergent magnetic field in momentum space, which
is the origin of the AHE [20–23].

Recently, other types of the AHE have theoretically been
suggested in collinear antiferromagnets, which are referred
to as the crystal Hall effect [24–27]. The crystal Hall effect
is caused by the symmetry lowering by the arrangement of
the nonmagnetic atoms in collaboration with time-reversal
symmetry breaking [24]. Moreover, such an AHE in collinear
antiferromagnets emerges even without the nonmagnetic ions
when the magnetic ions break the mirror symmetry as the
uniform magnetization does. Such phenomena were demon-
strated in LaMO3 (M = Cr, Mn, and Fe) [28], bilayer
MnPSe3 [29], NiF2 [30], and in the organic antiferromagnet
by the authors and their collaborators [31].

In the present study, we aim at clarifying that it is an
anisotropic magnetic dipole (AMD) that is the key ingredient
for the AHE. The AMD has the same rotational property as
the ordinary magnetic dipoles, i.e., the spin and orbital angular
momenta, but it carries no net magnetic moment. This is in a
family of electronic multipoles, which is clearly distinguished
from the other types of multipoles, such as the magnetic
octupoles [32–34], magnetic toroidal dipoles [35–38], and so
on. The AMD is an observed quantity that is defined as M ′ =
[3(r · σ )r − r2σ]/

√
10 with r and σ as the position vectors

within the atomic wave function and spin [39], which is often
called a T vector in the context of the x-ray magneto-circular

dichroism (XMCD) [40–43]. We demonstrate the essential
role of the AMD in the AHE by considering the collinear
antiferromagnetic ordering in the orthorhombic lattice system
as the simplest example. Since the concept of the AMD is
universal irrespective of crystal structures and types of mag-
netic orderings, it will enhance insight to engineer magnetic
materials showing the large AHE. We also propose that the
AMD is useful as a descriptor for the ferromagnetic-related
physical quantities in antiferromagnets including noncollinear
ones such as Mn3Sn [44].

Let us start by introducing the property of the AMD (M ′).
As was already mentioned, M′ has the same rotational prop-
erty besides the spatial-inversion and time-reversal properties
as the magnetic dipoles, namely, it is the time-reversal odd
rank-1 axial tensor (pseudovector) [32–34]. In contrast to the
fact that the ordinary magnetic dipoles are the fundamental
spin pseudovector, σ, or the contraction of two polar vectors,
−i(r × p), the AMD is constructed by the contraction of the
rank-2 polar tensors and σ. Indeed, its components are explic-
itly written as

M ′
x =

√
3

10

[(
− 1√

3
Qu + Qv

)
σx + Qxyσy + Qzxσz

]
, (1)

M ′
y =

√
3

10

[
Qxyσx −

(
1√
3

Qu + Qv

)
σy + Qyzσz

]
, (2)

M ′
z =

√
3

10

[
Qzxσx + Qyzσy + 2√

3
Quσz

]
, (3)

where (Qu, Qv, Qyz, Qzx, Qxy) are electric quadrupoles
with the functional forms of [(3z2 − r2)/2,

√
3(x2 −

y2)/2,
√

3yz,
√

3zx,
√

3xy] [39].
The expressions of M ′ in Eqs. (1)–(3) clearly show

that the AMD is accompanied with a spatially anisotropic
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FIG. 1. Schematic pictures of the spin polarization of the AMD
(a) M ′

z and (b) its σx component in real space [r = (x, y, z)]. In (a) and
(b), the arrows represent the spin polarization at each r and the colors
denote the spatial distribution of σz and σx components (Qu and Qzx)
in Eq. (3).

distribution of σ. Figure 1(a) shows a schematic picture of
the spin polarization of M ′

z at each r = (x, y, z) on the sphere.
The x-, y-, and z-spin components in Eq. (3) show symmetric
quadrupole distributions as zx, yz, and 3z2 − r2, respectively,
as exemplified for σx in Fig. 1(b). The angle dependence
of M ′, which is obtained by substituting the polar coordi-
nates both in the spin and in the quadrupole components,
is the same as that of the ordinary magnetic dipoles, i.e.,
M ′ ∝ (sin θ cos φ, sin θ sin φ, cos θ ). The same anisotropy of
M ′ results in the same symmetry structure in physical re-
sponses such as the AHE, the magneto-optical Kerr effect,
and the Nernst effect. In other words, the concept of the
AMD is naturally applicable to the phenomenological linear-
response tensor, in which the electric monopole, quadrupole,
and magnetic dipole appear in the conductivity tensor, for
instance [45].

Nevertheless, M ′ does not carry any magnetic moment due
to the anisotropic spatial distribution of spins. This means
that there is no direct coupling between M ′ and an external
magnetic field, and hence it does not appear in multipole
expansions of the scalar and vector potentials [39]. It is
noteworthy that M ′ is independent from the higher-rank mag-
netic multipoles and magnetic toroidal multipoles as well
as the magnetic dipoles in continuous rotational symme-
try [38,39,45]. Indeed, all the multipoles including the AMD
in Eqs. (1)–(3) satisfy the mutual orthogonality. From these
properties, the AMD could be a hidden degree of freedom that
characterizes the ferromagnetic-related physics even without a
net magnetization. Moreover, this aspect has a great advantage
to efficient spintronics devices without the leakage of mag-
netic field as ordinary ferromagnetism does [46].

With these preliminaries, we elucidate the importance
of the AMD on the basis of a specific lattice system in
the collinear antiferromagnetic state that shows the AHE.
Figure 2(a) shows our minimal model in the orthorhombic
four-sublattice (A–D) structure under the space group D1

2h.
The orbital degrees of freedom are not taken into account
for simplicity. The system consists of two alternating bonds
along the x and z directions in the xz plane with the lattice
constants a + a′ and c + c′, respectively, and the xz plane
is stacked along the y direction with the lattice constant b.
We take the lattice constant as a = a′ = b = c = c′ = 1 for
notational simplicity and the difference between a and a′ (or c

(a)

A
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D , A

BC
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aa’

c
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FIG. 2. (a) Orthorhombic lattice structure consisting of four
sublattices (A–D) with hopping parameters (ta, tb, tc, t ′

a, t ′
c, α).

(b) Collinear antiferromagnetic structure, which can be decomposed
into the cluster electric quadrupole Qzx and spin σx .

and c′) is expressed as the different hopping amplitudes. The
model Hamiltonian is given by

H =
∑
i jσ

(ti jc
†
iσ c jσ + h.c.) + 2

∑
lkσσ ′

αl sin kyc†
lkσ

σ σσ ′
x clkσ ′

−
∑
lkσσ ′

hlc
†
lkσ

σ σσ ′
x clkσ ′

≡ Ht + HSOC + HMF, (4)

where c†
iσ (ciσ ) is the creation (annihilation) operator of the

electron at site i with spin σ ; c†
lkσ

is the Fourier transform of
c†

iσ where l denotes the sublattice index A–D. The first term
in Eq. (4) represents the hopping between ith and jth sites.
We consider five hopping parameters on the different bonds:
ta and t ′

a along the x direction, tb along the y direction, and tc
and t ′

c along the z direction, as shown in Fig. 2(a). The hopping
parameters are set as ta = 1, t ′

a = 0.5, tb = 0.7, tc = 0.4, and
t ′
c = 0.2. The second term represents the site-dependent spin-

orbit interaction. Although similar hoppings like the y-spin
component with the kx dependence is also allowed by sym-
metry, we take into account only the x-spin component with
the ky dependence, since it is essential to obtain the AHE. As
this term originates from the alternating stacking along the z
direction as well as the atomic spin-orbit coupling, the sign of
αl depends on the sublattice, −αA = αB = αC = −αD ≡ α.
Note that αl sin ky and σx belong to the same irreducible repre-
sentation (irrep.), B−

3g. The third term represents the mean-field
term corresponding to the magnetic order. Among the 12
possible magnetic-ordering patterns within the four sublattice,
we suppose the collinear antiferromagnetic order with hA =
hB = −hC = −hD ≡ h, which only exhibits the AHE without
the net magnetization, as discussed below.

Figure 2(b) represents the supposed collinear antiferro-
magnetic structure. The magnetic moments in the sublattices
A and B (C and D) are along the positive (negative) x direction
with equal amplitude. This collinear order is regarded as a
product of the anisotropic alignment of point charges and
the spin along the x direction. Since the charge distribution
is characterized by the zx-type quadrupole, the third term in
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TABLE I. Irreducible representations of the related quantities in
this paper in the D2h (C2h) point group.

Irrep. Quantities Irrep. Quantities

Ag (Ag) Qu, Qv , Ht , HSOC Au (Au) —
B1g (Bg) M ′

z, σz, Qxy, φ, HMF B1u (Bu) sin kz, αl

B2g (Ag) M ′
y, σy, Qzx , hl B2u (Au) sin ky

B3g (Bg) M ′
x , σx , Qyz B3u (Bu) sin kx

Eq. (4) is proportional to Qzxσx, which is nothing but the first
term of M ′

z in Eq. (3) when we adopt the concept of the cluster
multipole by replacing r in Eq. (3) with the position vectors of
the sublattices from the center of the plaquette ADBC [47,48].
It is noted that, in general, the antiferromagnetic structure
corresponding to the cluster AMD can be obtained by the
virtual cluster method, in which ambiguity such as the choice
of the origin is eliminated [47]. In the end, this collinear
antiferromagnetic ordering is equivalent to the ferroic order of
the cluster AMD. Therefore, we refer to this antiferromagnetic
ordering as the (ferroic cluster) AMD ordering. As shown
below, it is the key ingredient that gives rise to the AHE.
Since Qzx (hl ) and σx belong to B+

2g and B−
3g, respectively,

HMF represents the symmetry-breaking term belonging to B−
1g,

which is the same irrep. of M ′
z. The irreps. of the related

quantities of the present paper in the D2h (C2h) point group
are summarized in Table I.

The Hall conductivity, σ A
xy ≡ σxy = −σyx, in the AMD-

ordered state is calculated by using the Kubo formula with
scattering rate τ−1 = 10−3 and the temperature T = 10−4.
The summation of the momentum k is taken over 1203 grid
points in the first Brillouin zone. Figure 3(a) shows σ A

xy as
a function of the chemical potential μ for h = 0.5 and 3
at α = 0.2. The results for μ > 0 are omitted owing to the
particle-hole symmetry in the model in Eq. (4). The staggered
magnetization mAFM

x ≡ 〈σx〉, which is equivalent to the ex-
pectation value of the ferroic cluster AMD, is also shown in
Fig. 3(b). As shown in Figs. 3(a) and 3(b), σ A

xy becomes finite
in the AMD-ordered state mAFM

x �= 0 except for the insulating
region for |μ| � 1.55 for h = 3. This result means that the
AHE is induced by the metallic AMD ordering. Nevertheless,
the behavior of σ A

xy and mAFM
x against μ appears to be totally

different. For both h, σ A
xy exhibits the two peak structures

while varying μ: μ 	 −2.15 and μ 	 −0.35 for h = 0.5 and
μ 	 −4.5 and μ 	 −1.7 for h = 3. Meanwhile, mAFM

x shows
a monotonous increase for both h. The two peaks in σ A

xy move
to smaller μ and their values are enhanced with an increase
of h. These behaviors are common for other h, as shown in
Figs. 3(c) and 3(d).

Moreover, as shown in Fig. 3(e) with fixed h = 2, the
peak positions of σ A

xy are almost unchanged while varying
α, but the peak values are enhanced with an increase of α.
Similar to the results in Figs. 3(a) and 3(b), the behavior of
σ A

xy is qualitatively different from that of mAFM
x . The overall

behaviors of σ A
xy and mAFM

x against α are shown in Figs. 3(g)
and 3(h), which indicate that there is almost no α dependence
of the peak positions. It is noted that σ A

xy vanishes at α = 0.

FIG. 3. (a) The μ dependence of σ A
xy with fixed α = 0.2 for

h = 0.5 (red square) and h = 3 (blue circle). (b) Staggered magneti-
zation mAFM

x corresponding to (a). (c, d) Contour plots of (c) σ A
xy and

(d) mAFM
x in the plane of μ and h at α = 0.2. (e, f) The same plot

as (a, b) with fixed h = 2 for α = 0.1 (red square) and α = 0.7 (blue
circle). (g, h) The same plot as (c, d) in the plane of μ and α at h = 2.
In (c) and (g), the dashed and solid lines represent the eigenvalues at
R and U points in the Brillouin zone as shown in the inset of Fig. 4(a).

From the above results, it is concluded that the AMD
ordering is necessary to induce σ A

xy but their behaviors do
not have a simple correlation like σ A

xy ∝ mAFM
x except in the

vanishing limit of mAFM
x . Hence, let us elucidate the essential

terms for the AHE as follows. At first, σ A
xy arises from the

nonzero Berry curvature in the presence of mAFM
x . In other

words, the electrons feel the effective magnetic flux when
they move in the closed loop in real space [23,31]. Then,
in order to deduce the effective magnetic flux, let us intro-
duce an orbital angular-momentum operator on the plaquette
ADDA as shown in the inset of Fig. 4(a) as O = Oy + Ox

with Oy = sin ky
∑

lσ γl c†
lσ clσ (−γA = γB = −γC = γD = 1)

and Ox ∝ sin kx. By evaluating the quantity, ρ = Tr[e−βHkO],
where H = ∑

k Hk and β = 1/T , we obtain nonzero ρ as
ρ ∝ αh sin2 ky in the lowest order for βHk 
 1 [48,49]. Note
that Ox does not contribute to ρ in the present model. This
indicates that the effective magnetic flux coupled with O
under the AMD ordering is represented by αl hl sin ky. In the
real-space picture, this magnetic flux φ on the plaquette in the
xy plane is depicted in the inset of Fig. 4(a). On the neighbor-
ing plaquettes within the unit cell, the fluxes penetrate in the
opposite direction; however, the summation over these fluxes
remains finite due to the inequivalent plaquettes, leading to
the net magnetic flux over the crystal. From the symmetry
viewpoint, the effective magnetic flux along the z direction
belongs to the irrep. B−

1g in the present case. One can confirm
that from Table I, αl hl sin ky actually belongs to B−

1g as it does.
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FIG. 4. (a) Electronic band structure along the symmetry lines
of the Brillouin zone in the top-right inset at α = 0.2 and h = 3.
The bottom-left inset indicates the schematic picture of an effective
flux φ (thick orange arrow) and the effective imaginary hopping
(green arrows on the bond) under the AMD. (b) DOS with the same
parameters as (a). The red curves stand for the total DOS, while
the blue dashed (green dotted) curves represent the DOS at ky = 0
(ky = π ).

The above result suggests that an important coupling
between the AMD-order parameter and the site-dependent
spin-orbit interaction can be identified by the symmetry ar-
gument in collinear antiferromagnets in general. The form
factor fα (k) and spin operator σα belong to the same irrep.
in HSOC, while the product of irreps. of σα and the clus-
ter quadrupole Qβ belongs to the same irrep. of the AMD,
M ′

ζ in HMF. Therefore, the coupling terms so as to satisfy
fα (k) ⊗ Qβ ∈ M ′

ζ are essential. In the noncollinear case, two-
or three-spin components are simultaneously involved in the
couplings, but the analysis is straightforward.

The enhancement of σ A
xy at particular μ in Fig. 3 is un-

derstood from the electronic state based on the effective
emergent magnetic flux αl hl sin ky; σ A

xy is obtained from the
current-current correlation function, and the relevant elec-
tronic current operator arising from the emergent magnetic
flux contains the k-derivative of it, i.e., αl hl cos ky. This means
that σ A

xy is expected to be large for ky = 0 or ky = π . In the
present model parameters, we find that the electronic band
dispersions in the kx-kz plane at ky = 0 or ky = π are con-
siderably flat in Fig. 4(a), which give rise to the large density
of states (DOS) at the peak positions of σ A

xy in Fig. 4(b) in
the case of α = 0.2 and h = 3. In particular, the small energy
difference between the bands in the kx-kz plane at ky = 0 and
ky = π is important to the large σ A

xy, where the energy dif-
ference is approximately expressed as 2|(ta − t ′

a)(tc − t ′
c)/h|

in the limit of h  ta, t ′
a, tc, t ′

c. Indeed, the peak positions are
well fitted by the eigenvalues at R and U points [the inset of
Fig. 4(a)] where the energy difference becomes the smallest,
as shown in the dashed and solid lines in Figs. 3(c) and 3(g),
respectively. Thus, the large enhancement of σ A

xy is ascribed to
the flat-band-like electronic structure separated by the small
energy difference in the k points, in which the current arising
from the effective magnetic flux, αl hl cos ky, is maximized.
The opposite sign of σ A

xy at the two peaks is attributed to
the opposite sign of cos ky in the expression of the effective
current at R and U points.

It is emphasized that the concept of the AMD can be
applied to other systems with different symmetry, since the

TABLE II. Nonzero anomalous Hall conductivity (σμν =
−σνμ ≡ σ A

μν for μ, ν = x, y, z) under the AMD ordering, mAFM �= 0
in the orthorhombic and monoclinic systems. In the orthorhombic
systems, the necessary quadrupole component Qμν is shown, while in
the monoclinic systems, the additional Qμν to that of the orthorhom-
bic systems is shown. Note that Qu and Qv are omitted as they belong
to the totally symmetric irrep.

M ′ Hall tensor Orthorhombic Monoclinic
mAFM ‖ x̂ ŷ ẑ x̂ ŷ ẑ

M ′
x σ A

yz — Qxy Qzx Qzx Qyz —
M ′

y σ A
zx Qxy — Qyz Qyz Qzx Qxy

M ′
z σ A

xy Qzx Qyz — — Qxy Qzx

symmetry of the AMD is always the same as that of the ordi-
nary magnetic dipoles, as discussed above. Therefore, we can
predict a nonzero AME by investigating whether the electric
quadrupole degree of freedom coupled to spin is active or not
in terms of the atomic, cluster, and bond degrees of freedom
of electrons in the framework of the augmented multipole
description [45,48]. A similar argument is straightforwardly
applied to the other high-symmetry lattice systems, such as
cubic, tetragonal, hexagonal, and trigonal lattice systems. It
is noted that in the monoclinic lattice system, additional cou-
pling between Qμν and σ can appear since σx and σz belong
to the same irrep. with the principal axis y. For example,
the finite Hall response σ A

xy is expected when the coupling
c1Qzxσx + (c2Qyz + c′

2Qxy)σy + c′
3Qzxσz becomes active. The

recent theoretical finding of the AHE in the κ-type organic
antiferromagnet is caused by such an additional coupling
(c′

i �= 0) [31]. The necessary couplings for the appearance of
the AHE in the orthorhombic and monoclinic lattice systems
are summarized in Table II.

Since the AMD is indistinguishable from the ordinary
magnetic dipoles in the sense of symmetry, it is useful to in-
troduce the AMD as a descriptor of the ferromagnetic-related
physical phenomena in antiferromagnets with negligibly
small magnetization. Note that when the size of the relevant
Hilbert space is sufficiently large, the AMD is independent
of the magnetic octupole with the same irrep. where their
matrices are different. In the present work, we mainly discuss
the cluster extension of the AMD; however, it also induces
an atomic-scale AMD in the same irrep. For example, the
noncollinear antiferromagnetic ordering in Mn3Sn showing
the large AHE [13,14] is also regarded as the ferroic cluster
AMD ordering as similar to the present work, which should
accompany the atomic-scale AMD in the same irrep. Indeed,
it has been observed by means of XMCD measurement [44].

In summary, we have theoretically investigated the role
of the AMD with particular emphasis on the AHE. To this
end, we have generalized the concept of the atomic-scale
AMD in the context of XMCD to the cluster one in order
to characterize the ferromagnetic-related physics without the
net magnetization under the antiferromagnetic ordering. The
AMD provides a guiding principle to attain the large AHE
in terms of not only the symmetry but also the microscopic
parameters in Hamiltonian. Indeed, we have shown that the
AHE is largely enhanced when the effective coupling between
the AMD-ordered parameter and the spin-orbit interaction
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is maximized by analyzing the fundamental orthorhombic
four-sublattice system. As the concept of the AMD can be
used generally for any noncollinear and noncoplanar magnetic
structures irrespective of the space group symmetry, it is a
natural descriptor for a further exploration of the materials
with exhibiting the large AHE and Nernst effect in antifer-
romagnetic spintronics.
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