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Microscopic calculation of spin torques in textured antiferromagnets
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A microscopic calculation is presented for the spin-transfer torques (STTs) and damping torques in metallic
antiferromagnets (AFs). It is found that the sign of the STT is opposite to that in ferromagnets (FMs) because
of the AF transport character, and the current-to-STT conversion factor is enhanced near the AF gap edge. The
dissipative torque parameter βn and the damping parameter αn for the Néel vector arise from spin relaxation of
electrons. Physical consequences are demonstrated for the AF domain wall motion using collective coordinates,
and some similarities to the FM case are pointed out such as intrinsic pinning and the specialty of αn = βn.
A recent experiment on a ferrimagnetic GdFeCo near its angular-momentum compensation temperature is
discussed.
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Manipulation of spin textures using electric current forms
an intriguing subfield of spintronics. The effect of currents
on ferromagnetic (FM) textures is well understood through
the spin angular momentum transfer between the conduc-
tion electrons and magnetization [1–3]. However, a similar
picture is not feasible in antiferromagnets (AFs) [4–6] since
the magnetic order parameter and conduction electrons do
not carry macroscopic spin angular momenta [7–13]. This
makes microscopic studies indispensable for understanding
spin torques in AFs.

In FMs, electrons moving in a spin texture with exchange
coupling exhibit a spin polarization:

〈σ̂〉 ∝ n × (v · ∇ )n, (1)

where n is the magnetic order parameter (magnetization vec-
tor for FM), and v is a velocity that characterizes the electron
flow (spin current for FM). The spin polarization arises as a
reactive response [14] and exerts a reaction torque, known as
the spin-transfer torque (STT), on the FM spins. In AFs, Xu
et al. [7] and Swaving and Duine [8] numerically obtained
the same form of spin polarization as Eq. (1) with n now
representing the Néel vector. Analogous to FM, this spin
polarization emerges through a reactive process and gives rise
to a torque that conserves total angular momentum, which
may thus be called the STT. However, in contrast to FM, the
coefficient cannot be determined by a macroscopic argument
based on the conservation law. Moreover, there is in general
another type of torque, called the β torque, that arises as a dis-
sipative response due to spin relaxation [15,16], the analytic
expression of which is yet to be determined for AFs.

In this letter, we present a microscopic calculation of the
STT, the β torque, and the damping torques in AF metals.
A careful treatment is given to the effects of spin relaxation,
which we model by magnetic impurities. We find a STT
proportional to the electric current but with a coefficient dif-
ferent from that in FMs. The β torque is proportional to the
spin-relaxation rate. Interestingly, both torques in AFs drive

the texture in the opposite direction than those in FMs. Using
collective coordinates, it is shown that only the β torque drives
AF domain walls (DWs) [9,10] because the effect of STT is
nullified by an effect like the intrinsic pinning in FMs. Finally,
a recent experiment on the current-assisted DW motion in
ferrimagnets at the angular-momentum compensation temper-
ature [17] is discussed.

We consider the s-d model consisting of localized spins
(HS), conduction electrons (Hel), and the s-d exchange inter-
action (Hsd) between them:

H = HS + Hel + Hsd. (2)

The space dimensionality d can be arbitrary in the general
formulation, but explicit calculations will be done for a two-
dimensional square lattice d = 2.

We first sketch the derivation of the equations that describe
long-wavelength, low-frequency dynamics of AF spins cou-
pled to conduction electrons. We start with the lattice model:

HS = J
∑
〈i, j〉

Si · S j − K
∑

i

(
Sz

i

)2
, (3)

Hsd = −Jsd

∑
i

Si · c†
i σ ci, (4)

where Si is a localized, classical spin at site i, J > 0 is the AF
exchange coupling constant between nearest-neighbor (n.n.)
sites 〈i, j〉, and K > 0 is the easy-axis magnetic anisotropy
constant. In Hsd, c†

i = (c†
i↑, c†

i↓) is the electron creation opera-
tor at site i, σ is a vector of Pauli matrices, and Jsd is the s-d
exchange coupling constant.

We consider a two-sublattice unit cell m with localized
spins, SA,m and SB,m, on each sublattice, and define the Néel
component nm and the uniform component lm by [18]

nm = SA,m − SB,m

2S
, lm = SA,m + SB,m

2S
, (5)
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where S = |Si| is the (constant) magnitude of the localized
spins. We assume the spatial variations are slow for nm and
lm and adopt a continuum description nm → n(r) and lm →
l(r). We also exploit the exchange approximation, |l| 	 1 and
neglect higher order terms in l [19]. It then follows from | l ±
n| = 1 that |n| = 1 and n · l = 0.

Since the magnetization l in Eq. (5) contains a texture-
induced unphysical component [20], it is convenient to work
with the physical magnetization [21],

l̃ ≡ l + a

2
(∂xn), (6)

where a is the lattice constant, and the x axis is chosen along
the bond connecting two sites in the unit cell. This preserves
the constraints, l̃ · n = 0 and |n| = 1 within the exchange
approximation and simplifies the formalism. In terms of l̃ and
n, the Lagrangian density is given by [21]

LS = sn[ l̃ · (n × ṅ) − HS − Hsd], (7)

HS = zJS

h̄

[
l̃2 + a2

4d

d∑
i=1

(∂in)2 − K

zJ
n2

z

]
, (8)

Hsd = −M

sn
( l̃ · σ̂ l + n · σ̂n), (9)

where sn = 2h̄S/(2ad ) is the density of staggered angular mo-
mentum, z is the number of n.n. sites of a given site, σ̂ l and σ̂n

are the uniform and staggered components of the electron spin
density, and M = JsdS. The equations of motion are obtained
as

ṅ = Hl × n + tn,

˙̃l = Hn × n + Hl × l̃ + tl , (10)

where Hn = ∂HS/∂n and Hl = ∂HS/∂ l̃ are the effective
fields coming from the spin part (HS), and

tn = M

sn
n × 〈σ̂ l〉, (11)

t l = M

sn
( n × 〈σ̂n〉 + l̃ × 〈σ̂ l〉), (12)

are the spin torques from electrons (Hsd). We calculate 〈σ̂ l〉
and 〈σ̂n〉 in response to an applied electric field E or to the
time-dependent n and l̃ using the Kubo formula [22,23].

To be explicit, we consider tight-binding electrons on a
two-dimensional square lattice described by

Hel = −t
∑
〈i, j〉

(c†
i c j + H.c.) + Vimp, (13)

where the first term expresses n.n. hopping, and

Vimp = ui

∑
l

c†
l cl + us

∑
l ′

Simp
l ′ · c†

l ′σ cl ′ , (14)

defines coupling to nonmagnetic and magnetic impurities.
Combined with Hsd, the hopping term gives upper and lower

(spin-degenerate) bands ±Ek = ±
√

ε2
k + M2 in a uniform AF

state, where εk = −2t (cos kx + cos ky). We take a directional

average of Simp
j with second moment S2

z (S2
⊥) for the compo-

nent parallel (perpendicular) to n. In the Born approximation,

they appear through γn = πniu2
i ν, γ⊥ = πnsu2

s S2
⊥ ν, and γz =

πnsu2
s S2

z ν, where ni and ns are the respective impurity con-
centrations, and ν = 1

N

∑
k δ(|μ| − Ek ) is the density of states

per spin (N is the total number of sites) with the chemical
potential μ measured from the AF gap center.

Vertex correction is necessary for a proper account of spin
conservation or its weak violation. Here, it is evaluated in the
ladder approximation:


σσ̄ = 2

πντ 2

μ2

μ2 − M2

1

Dq2 − iω + τ−1
ϕ + τ−1

s

. (15)

This describes diffusion, dephasing, and relaxation of trans-
verse spin density, generalizing the result of Ref. [25] to
include the effects of magnetic impurities. Here, τ−1 =
2 [γ+ + (M/μ)2γ−], with γ± = γn + γz ± 2γ⊥, is the electron
scattering rate, and

1

τϕ

= 4M2

μ2

[
μ2 + M2

μ2 − M2
γn + 3γ⊥ + 2(2μ2 + M2)

μ2 − M2
γz

]
, (16)

1

τs
= 4 (γ⊥ + γz ), (17)

are, respectively, the spin-dephasing rate [24,25] and the
(transverse) spin-relaxation rate. In Eq. (15), q−1 (ω−1) is the
typical length (time) scale of the AF spin texture (dynamics),
and D is the diffusion constant. We assume q�ϕ 	 1 and
ωτϕ 	 1, where �ϕ = √

Dτϕ is the spin-dephasing length,
and let q, ω → 0 in the results. The constant terms in the
denominator τ−1

ϕ + τ−1
s reflect spin nonconservation in the

electron system. The spin dephasing (τ−1
ϕ ), characteristic of

AFs and absent in FMs, is dominated by nonmagnetic impu-
rities and vanishes at M = 0 [24], whereas τ−1

s comes solely
from magnetic impurities and is essentially the same as that
in FMs [22]. It is convenient to decompose the former as
τ−1
ϕ = τ−1

ϕ0 + τ−1
ϕ1 , where τ−1

ϕ0 (∝ γn) is the contribution from

nonmagneic impurities and τ−1
ϕ1 is from magnetic impurities.

The “dissipated” spin angular momentum via τ−1
ϕ0 is actually

transferred to the AF spin system.
We calculate electron spin density induced by an ex-

ternal electric field E in the presence of spin texture (for
current-induced torques) or induced by time-dependent spins
ṅ and ˙̃l (for damping torques). We assume weak spin re-
laxation, γz, γ⊥ 	 γn and retain terms of lowest nontrivial
order. The calculations are straightforward along the lines of
Refs. [22,23,25]; see [26] for details.

Results.—We obtained

〈σ̂n〉 = − sn

M
[βn (vn ·∇ ) n + αnṅ], (18)

〈σ̂ l〉 = sn

M
[n × (vn ·∇ ) n − αl

˙̃l], (19)

which are consistent with previous studies [7–12] and lead to
the torques

tn = −(vn ·∇ )n − αl n × ˙̃l, (20)

t l = −βn n × (vn ·∇ )n − αn n × ṅ. (21)

We retained dominant contributions, which come from 〈σ̂ l〉
for tn, and 〈σ̂n〉 for t l .
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Current-induced torques.—The first terms in t l and tn are
current-induced torques, which are proportional to the charge
current density j = σxxE = 2e2DνE, via

vn = − h̄

2esn
Pn j. (22)

The velocity vn quantifies the STT, and we identify

Pn = μM

μ2 − M2
, (23)

to be the conversion factor from a charge current to STT. Note
that |Pn| can be significantly larger than unity near the AF
gap edge (|μ| � |M|). This contrasts to the case of FMs, in
which the corresponding factor |P| is less than or equal to
unity. The current-induced torque in t l is characterized by a
dimensionless parameter:

βn = 2(γ⊥ + γz )

M
= h̄

2Mτs
, (24)

which originates from magnetic impurities, i.e., from spin
relaxation, and is therefore a dissipative torque. The spin
dephasing due to nonmagnetic impurities (τ−1

ϕ 0 ) is microscopi-
cally a reactive process and does not contribute to βn, whereas
that from τ−1

ϕ 1 , combined with the self-energy terms, results in
a contribution proportional to τ−1

s . Along with the contribu-
tion originating from τ−1

s in Eq. (15), it leads to Eq. (24). The
obtained two current-induced torques are related via βnn×,
which is reminiscent of the relation between the reactive and
dissipative torques in FMs; we call the former [−(vn ·∇ )n] the
STT in AFs and the latter [−βnn × (vn ·∇ )n] the βn torque.
The expression of βn in terms of τs and M = JsdS is also
shared by FM [15,22].

The above two current-induced torques change their signs
across the AF gap [see Eq. (23)], reflecting the fact that elec-
trons in the upper and lower AF bands have mutually opposite
spin directions. This feature of the STT was suggested in
Ref. [8]. Interestingly, the driving direction is opposite to
the naïve expectation based on the two-FM picture of AFs.
Namely, for μ < 0, the spin polarization on the Fermi surface
is positive (dominated by majority spin carriers), but the driv-
ing direction is opposite to the direction of electron flow. This
is due to the intersublattice hopping in AFs, namely, the elec-
tron spins exert torques on oppositely pointing neighboring
spins, so the sign of the torques is reversed from that of FMs
[27]. The same is true for μ > 0.

Damping torques.—The second terms in Eqs. (20) and (21)
describe damping. The damping parameters are calculated as

αn =
[
γ⊥ + γz + M2

μ2
(γ⊥ − γz )

]
2h̄ν

sn
, (25)

αl = (μ2 − M2)(μ2 + M2)

μ2

ν

sn
τ. (26)

While αn arises from spin relaxation (magnetic impurities),
αl does not necessitate it. Rather, αl is proportional to τ ,
like conductivity, hence can be very large in good metals.
These features were pointed out in Refs. [29,30] based on
first-principles calculations.

It is interesting to compare αn with the Gilbert damping in
FMs:

αF =
∑

σ

(γz,σ νσ̄ + γ⊥,σ νσ )
h̄

s0
, (27)

obtained based on the same spin-relaxation model (mag-
netic impurities) [22]. Here, γα,σ = πnsu2

s S2
α νσ (α =⊥, z), νσ

(σ =↑,↓) is the density of states of electrons with spin σ , and
s0 = h̄S/ad is the angular-momentum density. We see that,
in the limit of spin-degenerate bands (ν↑ = ν↓) and isotropic
magnetic impurities (γ⊥ = γz), the above expressions of αn

(for AFs) and αF (for FMs) coincide. Therefore, in the current
model of AFs, the ratio βn/αn is of order unity, similar to FMs
[14].

Equations of AF spin dynamics.—With the obtained
torques and HS [Eq. (8)], the equations of motion are explic-
itly written as

ṅ = J̃ l̃ × n − (vn ·∇ ) n, (28)

˙̃l = −(c2J̃−1∇2n + K̃nzẑ) × n

+ [αnṅ + βn(vn ·∇ ) n] × n

+ n [ l̃·(vn ·∇ )n], (29)

with c = (zJSa)/(h̄
√

d ), J̃ = 2zJS/h̄, and K̃ = 2SK/h̄.
Damping terms in the first equation are dropped, as they are
higher order in l̃. Solving Eq. (28) for l̃ as l̃ = J̃−1n × [ṅ +
(vn ·∇ ) n] and substituting it in Eq. (29), one can obtain a
closed equation for n:

n̈ × n = (c2 ∇2n + J̃K̃nzẑ) × n

− J̃[αnṅ + βn(vn ·∇ ) n] × n

− [(vn ·∇ ) ṅ] × n. (30)

This differs slightly from Ref. [8] due to the difference in Hsd

(i.e., l vs l̃) and leads to the magnon dispersion

ω =
√

c2q2 + J̃K̃ + (vn ·q − iJ̃αn)2

4
+ iJ̃βnvn ·q

± vn ·q − iJ̃αn

2
, (31)

where damping enters only through αn and βn.
DW motion.—Here, we study the AF DW motion using

collective coordinates. Since LS [Eq. (7)] is written with n
and l̃, we consider collective coordinates for both n and l̃ [21].
Assuming for n = (sin θ cos φ, sin θ sin φ, cos θ ) a DW form,
cos θ (x, t ) = ± tanh [ x−X (t )

λ
] and φ(x, t ) = φ0(t ), where λ =

a
√

zJ/4Kd is the DW width, we treat the DW position X (t )
and the angle φ0(t ) as dynamical variables [31]. As for l̃, we
expand it as [21]

l̃(x, t ) = [ lθ (t ) eθ + lφ (t ) eφ ] ϕ0(x) + · · · , (32)

where eθ ≡ ∂θn and eφ ≡ n × eθ are orthonormal vectors

normal to n. The function ϕ0(x) = [cosh x−X
λ

]
−1

reflects the
spatial profile of n × ṅ and naturally extracts lθ and lφ in the
first term of LS [Eq. (7)]. The obtained Lagrangian LDW =
2sn(±Ẋ lφ − λφ̇0lθ ) − HS shows that lφ and lθ are canonical
conjugate to X and φ0, respectively. The equations of motion
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are given by

±λ l̇φ = βnvn − αnẊ , (33)

±Ẋ = ±vn + vJ lφ + αlλl̇φ, (34)

l̇θ = αn φ̇0, (35)

λ φ̇0 = −vJ lθ − αlλl̇θ , (36)

where vJ = 4JSλ/h̄, and ± is the topological charge of the AF
DW. The first two equations describe the translational motion,
and the remaining two describe the rotational motion of the
DW plane (defined by the Néel vector). Unlike in FMs [32],
these two motions are decoupled in AFs. The term ±vn in
Eq. (34) describes the spin-transfer effect, and βnvn in Eq. (33)
describes the momentum-transfer effect (a force on the DW).
The terms with αl are negligible in effect but retained here for
the sake of comparison with FMs (see below).

Let us overview the translational motion of AF DWs under
a stationary vn [9]. When αn = βn = 0, lφ is a constant of
motion. With an initial condition lφ = 0 (no canting), the
DW moves at a constant velocity Ẋ = vn by the spin-transfer
effect [8]. If the DW is initially canted lφ = l0

φ , the constant
velocity is modified to Ẋ = vn ± vJ l0

φ . For finite αn, lφ is
no longer conserved and approaches a terminal value lφ →
∓(1 − βn/αn)(vn/vJ ). Then from Eq. (34), the DW velocity
approaches

Ẋ → vn −
(

1 − βn

αn

)
vn = βn

αn
vn, (37)

which is solely determined by the βn torque. If βn = 0, the
spin-transfer effect is completely nullified by the canting lφ =
±vn/vJ , and the aforementioned steady movement eventually
ceases [9]. This is quite similar to the intrinsic pinning in FMs.
For finite βn, canting lφ is reduced, and the cancellation of the
spin-transfer effect is incomplete. Finally, the case βn = αn is
special in that there is no canting, and the spin-transfer effect
is undisturbed.

It is instructive to make a more detailed comparison with
FMs. In FMs, the current-driven DW motion is described by

±λ φ̇0 = βvs − αẊ , (38)

±Ẋ = ±vs + vK sin 2φ0 + αλφ̇0, (39)

where, now, X and φ0 are coupled. (Here, φ0 is defined by
the uniform magnetization, and ± is the topological charge
of the FM DW.) A close similarity to Eqs. (33) and (34) is
evident, and here, φ0 plays the role of lφ . The effect of current
appears in vs = −(h̄/2es0)P j, where P is the current polar-
ization factor, and the velocity vK = K⊥Sλ/2h̄ is defined with
the hard-axis anisotropy constant K⊥. At low current, vs < vK ,
and with β = 0, the DW plane tilts by φ0 = 1

2 sin−1(vs/vK )
and the DW ceases to move Ẋ = 0. This is the intrinsic pin-

ning in FMs [32,33]. If vs exceeds vK , vK can not nullify the
spin-transfer effect vs, and the DW is released from intrinsic
pinning. The corresponding term in Eq. (34) has the linearized
form vJ lφ , which is justified since vJ of AFs is much larger
than vK of FMs (by 2–3 orders of magnitude), and the intrinsic
pinning is robust in AFs. It is interesting to note the con-
trasting origins of intrinsic pinning; in FMs, it is the explicit
breaking of spin rotation symmetry K⊥, whereas in AFs, it
is the AF order itself, i.e., spontaneous breaking. Finally, the
case α = β provides a special solution φ0 = 0 and Ẋ = vs,
like the case αn = βn for AFs.

Recently, current-assisted field-driven DW motion was
experimentally studied in a ferrimagnetic GdFeCo near
its angular-momentum compensation temperature [17]. The
authors analyzed the data by the Landau-Lifshitz-Gilbert
equation for the uniform moment m (parallel to n) and ob-
tained a very large, negative value of β/α � −100. They
assumed ∼βPj for the β-torque coefficient (that acts on m),
with a small factor P (�0.1) included. If, however, the main
driving is the βn torque that acts on the Néel vector n, as
studied in this letter, we would conclude Pnβn/αn � −10
(see Ref. [26]). While βn/αn � 1 as in FMs (for positive Jsd

[34,35]), |Pn| can be significantly larger than unity near the
AF gap edge. Therefore, the large value of |Pn| ∼ 10 may
lie within the scope of the present results. The negative sign
can be explained likewise from Pn with a negative μ, which
reflects intersublattice hopping in AFs. Such “AF transport”
picture in GdFeCo is supported by a recent magnetoresistance
measurement [36].

In conclusion, we have presented a microscopic model
calculation of current-induced torques and damping torques
in AF metals, paying attention to the effects of spin relaxation
(and spin dephasing). A formulation in terms of the Néel vec-
tor and physical magnetization is given to study the AF spin
dynamics in metallic AFs with s-d exchange interaction. The
current-induced torques are found to be opposite in direction
to those of FMs, reflecting the AF transport character, and the
current-to-STT conversion factor can be significantly larger
than that in FMs. These results seem to be relevant to the
recent experiment on GdFeCo.
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