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Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering
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We demonstrate an experimental approach to determining the excited-state interatomic forces using femtosec-
ond x-ray pulses from an x-ray free-electron laser. We determine experimentally the excited-state interatomic
forces that connect photoexcited carriers to the nonequilibrium lattice dynamics in the prototypical Peierls-
distorted material, bismuth. The forces are obtained by a constrained least-squares fit of a pairwise interatomic
force model to the excited-state phonon dispersion relation as measured by the time- and momentum-resolved
x-ray diffuse scattering. We find that photoexcited carriers weaken predominantly the nearest-neighbor forces,
which drives the measured softening of the transverse acoustic modes throughout the Brillouin zone as well as
the zone-center A1g optical mode. This demonstrates a bond-selective approach to measuring electron-phonon
coupling relevant to a broad range of photoinduced phase transitions and transient light-driven states in quantum
materials.
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In light-driven nonequilibrium systems, the interatomic
forces can be strongly modified, either directly by creation
of hot carriers [1–4] or with low-energy resonant excitations
[5,6]. However, characterizing the interatomic forces in these
transients is challenging. Typically, only zone-center (zero
wave vector) modes are probed in the nonequilibrium state,
meaning that most of the degrees of freedom are experimen-
tally inaccessible, and thus information about the microscopic
nonequilibrium interatomic forces is limited. In equilibrium,
these forces can be obtained by fitting the phonon disper-
sion relation [7] derived from a combination of experimental
probes, such as inelastic neutron scattering (INS), inelastic
x-ray scattering (IXS), Raman scattering, and infrared scat-
tering, to particular ground-state force models [8–12].

Time- and momentum-resolved x-ray diffuse scattering
from photoexcited materials can reveal the nonequilibrium
phonon dispersion relation throughout the Brillouin zone [13].
Here, we demonstrate how these data can be used to extract
transient excited-state interatomic forces in the prototypical
Peierls-distorted material, bismuth. The forces are extracted
by fitting a Born–von Karman model to time-resolved x-ray
scattering experimental data at varying laser excitation levels.

*Present address: Department of Physics, Arizona State University,
Tempe, AZ 85287, USA, SamuelT@asu.edu

We show that changes to the phonon dispersion are driven pri-
marily by softening of the nearest-neighbor bonds, consistent
with photoexcitation partially reversing the Peierls distortion.
The results are in qualitative agreement with theoretical pre-
dictions for the excited-state forces and phonon dispersion
performed well over a decade ago [14]. Nonetheless, we mea-
sure a significantly higher level of softening of the acoustic
branches than predicted for bismuth. More generally, our re-
sults demonstrate a method that provides direct experimental
access to light-modified microscopic forces.

We performed near-IR pump, x-ray scattering probe ex-
periments at the X-ray Pump-Probe (XPP) instrument at
the Linac Coherent Light Source (LCLS) x-ray free-electron
laser. The experimental details are similar to those used
in Ref. [15] to measure the anharmonic decay channels
of the zone-center A1g phonon in photoexcited bismuth.
The monochromatized x-ray pulses had a photon energy of
9.5 keV and sub-50-fs pulse duration at nominally 120-Hz
repetition rate [16]. The sample was a 50-nm-thick epitaxial
film of bismuth with its surface normal along the trigonal axis
[perpendicular to the (111) planes in rhombohedral units].
The crystal was rotated such that the x rays propagated at a
0.5◦ grazing angle from the surface and at a 71◦ angle with
respect to (21̄1̄) (binary axis). The incident fluence of the
nearly copropagating, 800-nm (1.55 eV) p-polarized, 65-fs-
excitation laser was varied between 2.5 and 8.0 mJ/cm2. A
Cornell-SLAC pixel array detector (CSPAD) [17] was used to
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FIG. 1. (a) Diffuse scattering intensity of bismuth in our experimental geometry. (b) Representative time-resolved diffuse scattering signals
at the color-coded points shown in (a) at 2.5 mJ/cm2. (c) Observed frequencies of phonon mean-square displacements for photoexcited bismuth
as a function of incident laser fluence. The data correspond to the wave vectors in (d). Solid lines show the best fits to twice the phonon
frequency. The inset in (c) shows the Brillouin zones in the lower right quadrant of reciprocal space subtended by the detector in (a), and the
line cut along the detector the points in (c) correspond to. The illustrated path (purple) of the line cut shown in (c) and the Brillouin zone
boundaries (blue) are also indicated. (e) Time-dependent change in the Bragg intensity of the (223) peak, showing oscillations of the A1g mode
about its new quasiequilibrium position. (f) Time-dependent relative change in the diffuse scattering intensity for three laser fluences at the
wave vector Q = (1.00, 1.61, 1.39) reciprocal lattice units (r.l.u.) [black dot in the inset to (c) and dashed line in (c) and (d)]. The black lines
through the data in (b), (e), and (f) correspond to the best fits as described in the text. (g) Fitted frequencies to the oscillations of the A1g mode
shown in (e).

simultaneously collect scattered x rays over a wide range of
momentum transfer h̄Q on each x-ray pulse. The pump-probe
delay was achieved via rapid scanning of the pump delay with
an encoded translation stage, and time-tool correction to mit-
igate timing jitter between the near-IR and x-ray pulses. The
shot-by-shot corrections were then assembled into a temporal
array with 40 fs time spacing over a delay range of 6 ps.

The diffuse scattering depends to leading order on the Qth
Fourier component of the mean-square atomic displacements.
In high-quality crystals the equilibrium diffuse scattering sig-
nal I (Q) is largely due to thermal phonons. Upon ultrafast
photoexcitation, the initially thermally occupied phonons ad-
just to the new interatomic forces, leading to oscillations
in their mean-square displacements at twice the excited-
state phonon frequency. Before the phonons rethermalize, the
nonequilibrium diffuse intensity I (Q, t ) shows oscillations in
time at twice the phonon frequencies for Q far from the Bragg
condition [13,18].

Thus extraction of the interatomic forces from the experi-
mental data involves three steps: First, the phonon frequencies
as a function of momentum transfer are extracted by fit-
ting a sum of damped cosine functions to the measured
I (Q, t ). Second, these extracted frequencies are assigned to
phonons of a particular wave vector and branch. The ob-
served oscillation frequency at each pixel was assigned to
a particular phonon branch with the highest computed equi-
librium thermal diffuse scattering (TDS) intensity [19,20].
This assignment assumes similar excitation amplitude relative
to equilibrium for all phonon modes, such that the oscil-
lation amplitude is proportional to the initial mean-square
displacement of the mode. Finally, the interatomic forces are
determined by a least-squares optimization of the Born–von
Karman model parameters to the experimental data.

Figure 1 illustrates how we obtain the phonon frequencies
from I (Q, t ). The equilibrium diffuse scattering is shown in
Fig. 1(a), showing that our reciprocal space coverage spans
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multiple Brillouin zones. Each pixel on the detector maps
to a unique Q, each of which is mapped to a given wave
vector q = Q − G within the Brillouin zone, where G is the
nearest reciprocal lattice vector to Q. Representative traces of
I (Q, t ) are shown in Fig. 1(b). For each pixel we fit a sum
of exponential decay and decaying cosine functions to the
measured I (Q, t ) by linear prediction fitting [21]. Although
there are six phonon branches in bismuth, we find that the data
can be represented with three damped harmonic oscillators
[22]. Figure 1(c) shows the dominant frequency from the fits
along the reciprocal space path shown in Figs. 1(c) and 1(d)
for three different excitation fluences. Also shown is the result
of the best fit of our model to the data as described in more
detail below.

The final step in extracting the interatomic forces is to fit
a model of the phonon dispersion relation to the phonon fre-
quencies as a function of q. We model the phonon dispersion
relation using a Born–von Karman model, which takes the
interatomic forces as pairwise harmonic interactions between
the atoms. These models are well established and, in par-
ticular, have been used successfully to interpret equilibrium
phonon dispersion in bismuth measured by inelastic neutron
scattering [23]. We note that modern density functional per-
turbation theory (DFPT) based calculations of the phonon
dispersion in bismuth are also in good agreement with the
neutron scattering data [14].

The pairwise forces in our model �
α,β
i j are the second

derivatives of the total energy E with respect to a pair of
atomic displacements ui and u j in directions α and β.

Each �
α,β
i j corresponds to the force on atom j in direction

β = (x, y, z) produced by a displacement of atom i in direc-
tion α. The phonon dispersion is obtained from the dynamical
matrix [7], which is the Fourier transform over the force
constants

Dα,β
i j (q) = 1

M

∑

i j

�
α,β
i j e−iq·(ri−r j ). (1)

The factor M is the mass of the bismuth atom. The eigen-
values and eigenvectors of the dynamical matrix at wave
vector q are the square of the harmonic phonon normal mode
frequencies ω2

i (q), and phonon polarization εi(q), respec-
tively.

As a starting point for the fit, we use real-space forces
derived from a DFPT calculation. We limit the real-space
forces to a 4×4×4 supercell, corresponding to 1152 force
constants for 128 atom pairs. Additional symmetries of the
crystal (rhombohedral crystal with an R3̄m space group)
reduce this number to 21 independent 3×3 force matrices.
Furthermore, we assume that the photoexcitation does not
change the overall bonding directions of the system signifi-
cantly. The assumption implies that the eigenvalues, but not
the eigenvectors, of each real-space force matrix change,
further reducing the adjustable forces to three per symmetry-
inequivalent atom pair. This fitting procedure is equivalent to a
reduced Born–von Karman model [7] where the eigenvectors
of the interatomic force matrices are known. Note that though
the real-space eigenvectors of the force matrix are fixed, the
eigenvectors of the reciprocal space matrix (the dynamical
matrix) are not fixed, meaning that the phonon polarizations

FIG. 2. (a) Illustration of the crystal structure of bismuth, with
key bonds in the model highlighted. Blue and green bonds are the
first- and second-nearest-neighbor bonds used in the model. The
ninth-nearest-neighbor bonds connect the second-nearest neighbors
in the chain direction. (b) Illustration of the nearly sixfold coordi-
nated bonding cluster around a Bi atom (highlighted), showing the
three bonds [first-, second-, and ninth-nearest neighbors (NNs)] used
in the fit. The direction of the A1g mode ([111] direction) is shown.
(c) Traces of force matrices of the three largest interatomic forces as
a function of fluence, for atom pairs illustrated in (b).

are allowed to change, restricted only by the symmetry of the
real-space forces.

The eigenvectors of the real-space force matrix correspond
to the directions where the restoring force applied is parallel
to the atom displacement. Typically, this corresponds to one
component along the bond axis, one component in the bond-
ing plane, and one component out of the bonding plane. Of the
21 unique force matrices, we find good results if we restrict
our fits for the nonequilibrium case to the three matrices with
the largest trace, which correspond to the nearest-neighbor,
second-nearest-neighbor, and ninth-nearest-neighbor bonds.
These three bonds form along the quasi-one-dimensional
(quasi-1D) Peierls chains, illustrated in Figs. 2(a) and 2(b).
The other forces are kept at the values obtained by DFPT
calculations.

We incorporate one more piece of experimental informa-
tion into our model: the frequency of the zone-center LO(A1g)
mode observed near the Bragg peaks [1,24]. This is analogous
to including Raman scattering results as a constraint in fitting
INS or IXS data to a dispersion [9]. The A1g frequency was
incorporated as an additional term in the optimization function
and was weighted as highly as the total mean-square error
from the acoustic phonon branches.

As described above, we find that adjusting three in-
teratomic force matrices was sufficient to optimize the
least-squares fit and introducing additional adjustable forces
to the fitting did not significantly improve the fit. The three
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forces used in the fitting are the largest three forces in the
DFPT ground-state calculations and correspond to the first-,
second-, and ninth-nearest neighbors, i.e., the first-, second-,
and third-nearest neighbors along the nearly cubic bonding
direction [Fig. 2(b)]. The Supplemental Material provides
additional details about the fitting procedure, optimization
function, model, and fit convergence [22].

Systematic uncertainties in this experiment arise predom-
inantly from the geometry calibration, which introduces an
uncertainty in the mapping of each detector pixel to reduced
wave vector q. These systematic uncertainties are estimated by
varying the crystal alignment ±1◦ with respect to the trigonal
axis in the fitting routine and performing the fit multiple times.
The error bars in Fig. 2(c) indicate the largest and smallest
fit results produced by the fitting routine over the range of
possible geometries.

Further discussion of the implications of our fitting re-
sults requires discussion of the basic structure and physics of
bismuth. At ambient temperature and pressure, bismuth has
a Peierls-distorted rhombohedral structure with a primitive
basis of two atoms per unit cell. This structure can be thought
of as a rhombohedral distorted simple cubic structure, with
three nearest-neighbor bonds connecting atoms into layers of
buckled chains orthogonal to the trigonal axis. Photoexcitation
weakens the interatomic forces and drives atoms towards a
more symmetric sixfold-coordinated structure, along the A1g

mode coordinate [14,25–27]. In this high-symmetry structure,
the green and blue bonds shown in Figs. 2(a) and 2(b) are
equivalent. This motion can be observed in time-resolved op-
tical reflectivity [25,27–29] and in x-ray diffraction [1,24,26].
Here, we discuss how photoexcitation weakening the Peierls
distortion manifests in the interatomic forces and phonon dis-
persion relation.

The traces of the first-, second-, and ninth-nearest-neighbor
excited-state force matrices extracted from our fits are shown
in Fig. 2(c) as a function of fluence. The first-nearest-neighbor
force has the largest change with fluence. Intuitively, this force
can be thought of as arising from the bonds responsible for
the Peierls distortion (dimerization of Bi atoms, accompanied
by opening of a gap at the Fermi surface). When this bond
is sufficiently weakened, the crystal transitions into a high-
symmetry phase [25,28]. At 8 mJ/cm2, this force is already
weakened to almost 50% of its ground-state value. This force
constant dominates the frequency of the A1g mode. As a result,
at this fluence, the A1g mode is softened from 2.95 to 2 THz
(a 30% reduction in frequency). Extrapolating to high fluence,
this force constant would go to zero at a fluence of 16 mJ/cm2,
which is in agreement with theoretical and experimental evi-
dence for where the Peierls distortion vanishes [25,28].

In the force matrix with the second largest trace [Fig. 2(b),
ninth-nearest neighbor], the forces along the bonding direc-
tion stiffen slightly with increasing fluence, though it is within
our experimental uncertainty. The force matrix with the third
largest trace, while improving the fit, does not change ap-
preciably with increasing fluence within the uncertainties of
our fitting procedure. Modifying additional forces beyond the
third and fourth strongest does not significantly improve the
fit quality.

Using the fitted interatomic forces, we reconstruct the
phonon dispersion along high-symmetry directions, shown

FIG. 3. (a) Reconstructed phonon dispersion along the high-
symmetry directions in bismuth. Black lines show the (extrapolated)
ground-state dispersion, and blue lines show the photoexcited dis-
persion at 5.5 mJ/cm2. Pink shaded areas indicate systematic
uncertainties in the dispersion relation as described in the text.
(b) DFPT calculations of the ground-state and excited-state forces
for the same excitation level as in (a). v.e., valence excitation.

in Fig. 3(a), and compare with previous excited-state DFPT
results from more than a decade ago [14], shown in Fig. 3(b).
The shaded areas in Fig. 3(a) indicate uncertainties in the
excited-state dispersion based on systematic propagation of
the uncertainties in the extracted forces. We note that the
softening of the acoustic modes is more pronounced than
that predicted by the constrained density functional theory
(DFT) calculations in Ref. [14], especially for the transverse
acoustic (TA) mode near the L point. Our fits to experimen-
tal data show less softening in the ninth-nearest-neighbor
force compared with excited-state DFPT predictions. Harden-
ing of this force serves to counteract the effect of softening
of the nearest-neighbor force of the acoustic modes. This
explains the disagreement between our reconstruction and
DFPT calculations and suggests that DFPT calculations may
overestimate the photoinduced hardening of the ninth-nearest-
neighbor force. This illustrates the detailed bond information
contained in the nonequilibrium dispersion relation.

In conclusion, we have demonstrated a method for
determining the excited-state interatomic forces using wave-
vector-resolved femtosecond x-ray scattering. Time-domain
experiments enable high-resolution measurements of the
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phonon frequencies in the transient state. In the case of bis-
muth, we determine the connection between photoexcitation
and the interatomic forces that drive the Peierls distortion.
More generally, we anticipate that this approach could eluci-
date the microscopic details of nonequilibrium states beyond
what is possible from time-resolved diffraction data alone.
Our approach allows us to measure the influence of pho-
toexcitation on specific chemical bonds. This will provide
an invaluable tool for revealing the microscopic interactions
responsible for the novel functionality of nonequilibrium ma-
terials [5,6,30–34] and provide a path towards rational design
of nonequilibrium properties.
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