
PHYSICAL REVIEW B 103, L161403 (2021)
Letter

Piecewise nonlinearity and capacitance in the joint density functional theory
of extended interfaces

Tobias Binninger *

ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France

(Received 11 January 2021; revised 25 March 2021; accepted 29 March 2021; published 9 April 2021)

The ab initio simulation of charged interfaces in the framework of density functional theory (DFT) is
heavily employed for the study of electrochemical energy conversion processes. The capacitance is the primary
descriptor for the response of the electrochemical interface. It is essentially equal to the inverse of the energy
curvature as a function of electron number, and as such there appears a conflict with the fundamental principle
of piecewise linearity in DFT that requires the energy curvature to be zero at fractional electron numbers,
i.e., almost everywhere. To resolve this conflict, we derive an exact expression between the energy curvature
and the Kohn-Sham density of states, the local density of states, and the Fukui potential. We find that the
piecewise linearity requirement does not hold for the volume- or area-specific energy of extended systems and
surfaces. Applied to the joint density functional theory of an electrode-electrolyte interface, including the ionic
and dielectric response of the electrolyte, the same expression represents a rigorous basis for the partitioning
of the total interfacial capacitance into contributions of the quantum capacitance, space-charge capacitance,
and electrochemical double-layer capacitance. It provides insight into the influence of the electrode material,
thickness, and temperature on the charging characteristics, as demonstrated by results for a bulk gold electrode,
a single-layer gold electrode, and a single-layer graphene electrode.
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Since the work of Perdew et al. [1], piecewise linearity
has become a cornerstone of the density functional theory
(DFT) of open systems [2]. The ground-state energy E as a
function of the electron number N consists of linear segments
between integer values of N . In particular, the energy curva-
ture η = ∂2E/∂N2 is zero at fractional N . This property is
explained by the statistical ensemble character of open sys-
tem states [1]. Within the Kohn-Sham (KS) approach [3], the
interacting many-electron system is mapped onto a system of
noninteracting fermions comprising a series of single-particle
eigenstates εi with occupation numbers fi according to a
Fermi-Dirac distribution. In the zero-temperature limit and for
a fractional electron number N , the Fermi energy is pinned
to the energy εH of the highest (partially) occupied molecu-
lar orbital (HOMO), and εH = ∂E/∂N according to Janak’s
theorem [4]. Therefore, piecewise linearity is equivalent to
a constant HOMO energy, which is fundamentally important
for the construction of improved DFT functionals [5] and the
physical interpretation of KS orbital energies [6,7].

Conceptual DFT [8] provides a different perspective on
energy curvature, giving it a physical meaning as the chemical
hardness η = ∂2E/∂N2 [9,10] quantifying chemical reactiv-
ity. However, because of piecewise linearity, the definition
of chemical hardness as a second derivative of the energy is
problematic, and it must be replaced by its finite difference
equivalent [9] involving integer electron numbers only. Obvi-
ously, such definition is only meaningful for systems with a
finite number of electrons. In the limit of infinitely extended
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systems, the piecewise linearity condition is trivially fulfilled,
because the system properties, and thus the KS orbital ener-
gies, become insensitive to finite changes in electron number
[6], at least if the added charge gets delocalized across the
entire system [11]. To define a nontrivial quantity, Vlček et al.
[12] introduced the energy curvature per unit cell, ηUC =
∂2EUC/∂N2

UC, for periodic systems, where EUC = EM/M and
NUC = NM/M are the energy and electron number per unit
cell of a large but finite crystal comprising M unit cells.
Obviously, the total energy curvature ηM = ∂2EM/∂N2

M scales
like ηM = ηUC/M. Unlike ηM , it was found that ηUC did not
turn to zero with increasing system size, which was attributed
to the failure of common approximate exchange-correlation
(XC) functionals to correctly reproduce the expected zero unit
cell energy curvature [12].

For electrochemical interfaces, however, it follows from
the Lippmann equation [13] that the unit cell energy curvature
is essentially equal to the inverse of the interfacial capacitance
per unit cell, and it should thus be strictly greater than zero, in
contrast to the expectation from piecewise linearity. Moreover,
the total interfacial capacitance is commonly split into con-
tributions of the quantum capacitance [14,15], space-charge
capacitance, and electrochemical double-layer capacitance,
but their precise relation to fundamental DFT is not fully un-
derstood to date [16–19]. For most systems, explicit modeling
of the electrolyte [20,21] within DFT is prohibitively expen-
sive, and different implicit models for the ionic countercharge
in the electrolyte were developed, including a homogeneous
background [22], Gaussian distributions [23], and diffuse
screening layers described by Poisson-Boltzmann-type equa-
tions [24–30]. The latter approach emerges from a general
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joint density functional theory (JDFT) [26,31] that combines
the electronic DFT with a description of the electrolyte in
terms of dielectric solvent and ionic charge densities. Obvi-
ously, the electrolyte model will influence capacitance and
energy curvature [32].

In the present Letter, we consolidate the various per-
spectives on energy curvature. We show that the piecewise
linearity requirement breaks down for unit cells of extended
periodic systems, and we derive an exact expression that links
the total energy curvature to the density of states and Fukui
functions of the system. It is valid for finite and for extended
systems, both metals and insulators. Including the influence
of an electrolyte environment within JDFT, it further provides
a natural partitioning of the total capacitance into quantum
capacitance, XC capacitance, space-charge capacitance, and
electrolyte capacitance. Applied to bulk metal electrodes, a
particularly intuitive expression involving the Fukui surface
dipole is obtained.

Mermin [2] formulated the grand canonical version of den-
sity functional theory for electrons in a fixed external potential
(−e)φext(r). In a typical situation, the latter is the electrostatic
potential φext(r) = (1/4πε0)

∫
ρext(r′)/|r − r′|dr′ produced

by an external charge density ρext that represents the atomic
cores. For given temperature T and chemical potential μ,
the grand potential � = U − T S − μN , where U and S are
the inner energy and entropy, respectively, is a functional
of the electron density n(r) with a minimum for the equilib-
rium density. The self-consistent Kohn-Sham solution [3] to
the minimization problem is given by

n(r) =
∑

i

ωi ni(r), (1)

where ωi = 1/(1 + exp [(εi − μ)/kT ]) are the Fermi-Dirac
occupation numbers, and ni(r) = |
i(r)|2 are the normalized
densities of the eigenstates of the noninteracting single-
particle Schrödinger equation,(

− h̄2

2m
∇2 + (−e)φ(r) + μxc(r)

)

i(r) = εi 
i(r). (2)

The XC potential μxc(r) = δFxc/δn(r) is the variational
derivative of the XC energy functional, and φ(r) = φext(r) −
(e/4πε0)

∫
n(r′)/|r − r′|dr′ is the sum of the external and

electronic electrostatic potentials, where ε0 is the vacuum
permittivity. Integrating Eq. (1) over space and using the
normalization of the orbital densities ni yields the (average)
electron number

N =
∑

i

1

1 + exp
(

εi−μ

kT

) . (3)

We first note that, by construction, the chemical potential μ

in the Fermi-Dirac distribution of the KS orbital occupations
ωi is equal to the chemical potential of the electronic grand
canonical ensemble,

μ = ∂A

∂N
, (4)

with the Helmholtz free energy A = � + μN . This relation
can be regarded as Janak’s theorem in grand canonical DFT.
Consequently, chemical hardness is given by the free energy

curvature

η = ∂2A

∂N2
= ∂μ

∂N
. (5)

Taking the partial derivative of Eq. (3) with respect to N and
resolving for ∂μ/∂N , we obtain

∂μ

∂N
= 1

gT
D(μ)

(
1 +

∑
i

pT (μ − εi )
∂εi

∂N

)
, (6)

where we introduced the temperature-dependent density
of states (DOS) gT

D(ε) = ∑
i pT (ε − εi ), with pT (x) =

(1/kT ) exp[x/kT ]/(1 + exp[x/kT ])2 being a thermally
broadened peak with unit area centered at zero. Obviously,
pT (x) → δ(x) for T → 0, and therefore gT

D(ε) → gDOS(ε),
which is the usual DOS of the KS spectrum. Using the
Hellmann-Feynman theorem with the Hamiltonian of Eq. (2),
we compute

∂εi

∂N
=

∫
|
i(r)|2

(
(−e)

∂φ(r)

∂N
+ ∂μxc(r)

∂N

)
dr

=
∫∫

ni(r)

(
e2

4πε0

1

|r − r′| + δμxc(r)

δn(r′)

)
fe(r′) dr′ dr,

(7)

where δμxc(r)/δn(r′) is the XC kernel, and fe(r′) =
∂n(r′)/∂N is the electronic Fukui function [8], which fulfills∫

fe(r′)dr′ = 1. Inserting Eq. (7) into Eq. (6) yields the free
energy curvature, or chemical hardness,

η = 1

gT
D(μ)

+
∫

gT
LD(μ, r)

gT
D(μ)

{
μ f

xc(r) − eφ f
e (r)

}
dr, (8)

where gT
LD(ε, r) = ∑

i pT (ε − εi )ni(r) is the temperature-
dependent local density of states (LDOS), which
fulfills

∫
gT

LD(ε, r)dr = gT
D(ε) and converges to the

usual LDOS gLDOS(ε, r) for T → 0. Further, μ
f
xc(r) =∫

[δμxc(r)/δn(r′)] fe(r′) dr′ is the Fukui XC potential, and
φ

f
e (r) = (−e/4πε0)

∫
fe(r′)/|r − r′| dr′ is the electrostatic

Fukui potential [33].
Equation (8) is a first important result of the present Let-

ter, and it is valid for any temperature. Yang and Parr [10]
already obtained the first term, which neglects the KS orbital
relaxation as pointed out by Cohen et al. [34]. This is gen-
erally termed the frozen orbital approximation in conceptual
DFT, and the fixed band approximation (FBA) in quantum
capacitance [17]. The second term in Eq. (8) is the interaction
between the normalized LDOS (gT

LD/gT
D) at the Fermi energy

and the Fukui function mediated by the kernel of the KS
potential.

For a finite, confined system, the KS eigenvalue spectrum
is discrete. At T = 0, the DOS becomes a series of Dirac
delta functions, and the normalized LDOS at the Fermi energy
converges precisely to the HOMO density nH(r). The chem-
ical potential has discontinuous jumps at integer N , and for
fractional N it is pinned to the respective HOMO energy εH,
where the DOS is infinite. Therefore, the first term in Eq. (8)
is zero at fractional N and T = 0 for a finite, confined system,
and Eq. (8) becomes precisely equal to the energy curvature
relation (8) of Vlček et al. [12], which must be zero to fulfill
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the piecewise linearity requirement. Accordingly, to provide
a meaningful definition of the chemical hardness η for finite
systems, Eq. (5) is generally replaced by its finite difference
equivalent involving integer electron numbers only [9].

We next consider an infinite periodic system as the limit
M → ∞ of finite crystals comprising M unit cells (UCs),
and, following Vlček et al. [12], we consider the unit cell
energy curvature ηUC = MηM . From the M scaling of the
DOS, LDOS, and Fukui function, together with the unit-cell
periodicity, it follows that ηUC becomes constant for large M,
and it fulfills an expression analogous to Eq. (8) involving
the corresponding UC-related quantities. Most importantly,
for an infinite system, ηUC generally does not converge to
zero with T → 0, neither for gapless metals, nor for in-
sulators with a KS band gap. With increasing M → ∞,
the discrete KS orbitals keep splitting and form continu-
ous bands in the thermally broadened UC-normalized DOS
gT

D(ε) at any T > 0. The subsequent limit T → 0 yields a
UC-normalized DOS which remains bounded everywhere, in
particular 1/gDOS(μ) > 0. Also the second term of Eq. (8)
generally remains nonzero if limM→∞ is performed before
limT →0, because piecewise linearity only dictates the contri-
bution of the actual HOMO to be zero, which is negligible
compared to the contributions of all orbitals with infinites-
imally smaller eigenvalues of the same band at any T > 0.
Consequently, the energy per unit cell of an infinite periodic
system does not fulfill piecewise linearity, and the value of the
energy curvature is determined by the properties of the band
in which the chemical potential lies. For metals, η = ∂μ/∂N
is well defined. For semiconductors or insulators with a gap
above the HOMO, the derivative yields two different values
when taken from above (η+) and below (η−), corresponding
to the properties of the conduction band and valence band,
respectively.

Until now, we have neglected the question of charge neu-
trality. However, for infinite periodic systems, the unit cell
must remain neutral upon change of the electron number to
avoid a divergent electrostatic energy [35]. For bulk systems,
this is typically achieved by a homogeneous compensat-
ing background charge [12]. For electrochemical interfaces,
charge neutrality is maintained by changing the ionic charge
in the electrochemical double layer in accordance with the
electron number. The total energy cannot be separated into
uniquely defined electronic and ionic energies, because elec-
trostatic energy contributions can be arbitrarily shifted from
electronic to ionic, and vice versa, by shifting the electrostatic
potential reference. Consequently, the energy curvature, as
well as the capacitance, must be understood as properties of
the system as a whole.

JDFT [26,31] treats the ionic densities {ni} and the dielec-
tric bound charge density ρdiel of the electrolyte together with
the electron density n in a combined free energy functional.
We consider a large but finite electrode-electrolyte system
comprising M supercells of an electrode slab embedded in
a bulk of electrolyte that is sufficiently extended so that
fields and charges are fully screened at the boundary of the
system. The ionic charge changes with the electron number
and preserves overall neutrality Qtot = ∫

(ρext + ρe + ρion +
ρdiel ) dr = 0, where ρe = −en and ρion = ∑

eZini for ion
species with charges eZi. The charge neutrality constraint is

automatically fulfilled for a simple electrolyte response de-
scribed by a linearized Poisson-Boltzmann equation [26,27].
For general electrolyte models, however, charge neutrality
must be imposed [36]. At a general level of JDFT [26,27],
the total Helmholtz free energy functional can be written as

A[n, {ni}, ρdiel, φ]

= T ni
kin[n] − T Sni[n] + Fxc[n]

+ A0
elyte[{ni}, ρdiel] − ε0

2

∫
|∇φ|2 dr

+
∫

φ
(
ρext − e n +

∑
eZi ni + ρdiel

)
dr, (9)

where T ni
kin[n] and Sni[n] are the functionals of kinetic energy

and entropy of the noninteracting Kohn-Sham fermions [27],
respectively, Fxc[n] is the electronic exchange-correlation
functional, and A0

elyte[{ni}, ρdiel] is the free energy functional
of the electrolyte excluding mean-field electrostatic interac-
tions. All mean-field electrostatic interactions in the system
are captured by the terms with the electrostatic potential φ.
Minimization with respect to variations δφ(r), i.e., setting
δA/δφ(r) = 0, yields the Poisson equation ∇2φ = −(ρext +
ρe + ρion + ρdiel )/ε0 with solution

φ(r) = 1

4πε0

∫
[ρext + ρe + ρion + ρdiel](r′)

|r − r′| dr′. (10)

We consider a constant temperature T and volume V , and a
controlled electron number N . We further treat the electrolyte
as a reservoir with fixed ionic chemical potentials {μi}. Under
these conditions, the functional to be minimized is given by

F[n, {ni}, ρdiel, φ]

= A[n, {ni}, ρdiel, φ] −
∑

μi

∫
ni dr

− μ

(∫
n dr − N

)
− λ

∫
(ρext + ρe + ρion + ρdiel )dr,

(11)

where the Legendre transformations from ion numbers Ni =∫
ni dr to chemical potentials μi were performed. The elec-

tron chemical potential μ appears as the Lagrange multiplier
of the electron number constraint, and λ is the Lagrange mul-
tiplier of the charge neutrality constraint. Minimization with
respect to the electron density yields μ = δA/δn(r) + eλ, or

μ = δT ni
kin

δn(r)
− T

δSni

δn(r)
+ δFxc

δn(r)
− e (φ(r) − λ), (12)

which is precisely solved [3] by the Kohn-Sham equations (1)
and (2) with an electrostatic potential shifted by −λ. Mini-
mization with respect to ρdiel results in δA/δρdiel(r) = λ, and
for the ionic densities we find μi = δA/δni(r) − eZi λ, or

μi = δA0
elyte

δni(r)
+ eZi (φ(r) − λ) = μ0

i,b + eZi (φb − λ),

(13)

where μ0
i,b = δA0

elyte/δni,b and φb = φ(rb) are the nonelectro-
static parts of the ionic chemical potentials and the plateau
value of the electrostatic potential (10) in the bulk electrolyte,
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respectively. The value of μ0
i,b is determined by the fixed

bulk concentrations of the electrolyte. Again, the Lagrange
multiplier λ is equivalent to a constant shift in the electro-
static potential and thus represents a gauge freedom. We note
from Eq. (13) that the fixed ionic chemical potentials must
be of the form μi = μ0

i,b + eZi φ0, where φ0 is an arbitrarily
chosen constant. It then follows that λ = φb − φ0 with the
consequence that the shifted potential φ(r) − λ is fixed at φ0

in the bulk electrolyte.
We now focus on equilibrium states of the system that

fulfill the minimization conditions above. The minimized free
energy (11) of the system is then simply the grand potential
with respect to the ionic variables,

F (N, {μi}) = A −
∑

μi Ni, (14)

where we omitted the implicit dependence on temperature T
and volume V . For fixed ionic chemical potentials {μi}, the
ion numbers Ni change as a function of the electron number
N to preserve charge neutrality. Therefore, any change of N
implies a joint particle number change in the neutral electron-
ion system. We thus define the derivative of the free energy
(14) with respect to N as the joint chemical potential,

μJ =
(

∂F
∂N

)
{μi}

=
∫ (

δA

δn

∂n

∂N
+

∑ (
δA

δni
− μi

)
∂ni

∂N

+ δA

δρdiel

∂ρdiel

∂N

)
dr = μ, (15)

where we used the minimization conditions together with
charge neutrality, ∂Qtot/∂N = 0. We note that μJ is simply
equal to the electron chemical potential μ. The latter is de-
termined by Eq. (12) together with N = ∫

n dr, which are
precisely equivalent [3] to the standard Kohn-Sham equations
(1) and (2), but with φ(r) in Eq. (2) replaced by the shifted
electrostatic potential φ(r) − λ = φ(r) − φb + φ0.

We can therefore follow the same derivation that led to
Eq. (8) to obtain the total free energy curvature, or joint
chemical hardness

ηJ = 1

gT
D(μ)

+
∫

T
LD

{
μ f

xc − e
[
φ

f
J − φ

f
J,b

]}
dr, (16)

where T
LD(r) = gT

LD(μ, r)/gT
D(μ) is the normalized LDOS

at the Fermi energy and we used the fact that φ0 is
a constant, i.e., ∂φ0/∂N = 0. According to Eq. (10),
the joint electrostatic Fukui potential φ

f
J (r) = ∂φ(r)/∂N =

(−e/4πε0)
∫

fJ(r′)/|r − r′| dr′ is generated by the joint
Fukui function fJ = f J

e − f J
ion+diel, where we introduced an

ionic and dielectric Fukui function f J
ion+diel = (1/e)∂ (ρion +

ρdiel )/∂N fulfilling
∫

f J
ion+diel(r

′)dr′ = 1 as a result of overall
charge neutrality. The superscripts “J” of the electronic and
ionic + dielectric Fukui functions emphasize that they are
mutually dependent within JDFT, defined by synchronous
variations in both electron and ion numbers.

Equation (16) is the central result of the present Letter,
and it represents a rigorous basis for an understanding of
the relevant contributions to interface capacitance. Because

the shifted electrostatic potential φ(r) − φb + φ0 in the KS
Hamiltonian is fixed at φ0 in the bulk electrolyte, the elec-
trode potential is equal to E = −μ/e referenced to φ0 that
represents the choice of a certain reference electrode potential.
Furthermore, −e dN = dQ is the change in the charge stored
at the electrochemical interface. Therefore, the joint chemical
hardness of Eq. (16) is simply the inverse of the total differen-
tial interface capacitance per supercell (SC), ηJ = ∂μ/∂N =
e2 ∂E/∂Q = e2/Ctot. The additive nature of Eq. (16) provides
a natural interpretation of the total capacitance in terms of a
serial circuit of capacitors,

1

Ctot
= 1

CQ
+ 1

Cxc
+ 1

Cdl
, (17)

where the quantum capacitance CQ = e2 gT
D(μ) is simply

the DOS at the Fermi energy, the XC capacitance Cxc =
e2/

∫
T

LD μ
f
xcdr is the contribution of the Fukui XC potential,

and Cdl is the electrostatic double-layer capacitance given by

1

Cdl
= 1

e

[
φ

f
J,b −

∫
SC

φ
f
J (r) T

LD(r) dr
]
. (18)

By definition of the joint Fukui potential, Cdl comprises both
the electronic excess charge of the electrode, as well as the
ionic countercharge layer of the electrolyte. The former can
be either a very narrow surface charge layer, as in the case of
metal electrodes, or it can be a space-charge layer extending
deeply into a semiconductor electrode.

A partitioning of the total capacitance similar to Eq. (17)
has been previously used by many authors (e.g., [18]). To
the best of my knowledge, this is the first time that it has
been rigorously derived ab initio, without including certain
contributions a posteriori.

For a thick metal electrode, expression (17) reduces to a
particularly simple form. With a nonzero LDOS at the Fermi
energy in the bulk, the total DOS scales with the electrode
thickness t , so 1/CQ eventually becomes negligible. The in-
tegral in Eq. (18) corresponds to an average of the Fukui
potential weighted by the normalized LDOS. As shown in
Fig. 1(b), the latter becomes periodic within the electrode
bulk, so the weight of the bulk region turns to one for t → ∞.
Therefore, the integral in Eq. (18) converges to the plateau
value φ

f
J,(−b) of the Fukui potential inside the electrode bulk

(denoted by “−b”) [see Fig. 1(b)], and we obtain the simple
relation 1/Cdl = �φ

f
J /e with the Galvani step in the joint

Fukui potential between electrode and electrolyte. Perform-
ing a surface multipole expansion [40] of the joint Fukui
potential, and noting that the joint Fukui charge is zero, we
have �φ

f
J = D f

J /ε0, where D f
J = (−e/ASC)

∫
SC z fJ(r) dr is

the average surface dipole of the joint Fukui function, with
the surface area ASC and the surface normal coordinate z.
With similar arguments, 1/Cxc = μ

f
xc,(−b)/e2 is given by the

bulk value of the Fukui XC potential, which we assume to be
negligible, because the electronic Fukui function is localized
around the metal electrode surface [see Fig. 1(b)]. Therefore,
the total capacitance of a thick metal electrode-electrolyte
interface is given by the inverse of the Fukui Galvani potential,
or Fukui surface dipole,

Ctot = Cdl = e

�φ
f
J

= ε0e

D f
J

, (19)
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FIG. 1. JDFT results: (a, b) Au (111) slab with 13 layers, z = 0 at central layer, dashed vertical line through center of surface atoms, kT =
50 meV; the diagonal in (a) corresponds to equality; results in (b) are scaled for improved visibility. (c) Single-layer Au (111) charged from
both sides, kT = 50 meV; potential of zero charge, EPZC. (d) Single-layer graphene charged from both sides,

∑
1/Ci at different temperatures.

DFT computations with VASP [37]; projector augmented wave pseudopotentials [38]; Perdew-Burke-Ernzerhof XC functional [39]; energy
cutoff (a–c) 450 eV for Au slabs, and (d) 520 eV for graphene; Fermi-Dirac smearing with kT ; VASPSOL implicit electrolyte model [28] with
χ + 1 = 78.4 and λD = 1.5 Å; fixed atomic positions derived from (a–c) relaxed Au bulk lattice, and (d) relaxed single-layer graphene in
vacuum; -centered K-point meshes: (a, b) (27 × 27 × 1), (c) (97 × 97 × 1), and (d) (193 × 193 × 1). Solid squares and diamonds in (a) and
in (c)–(d), respectively, are computed from finite differences (f.d.), e2/C = �μ/�N .

as confirmed by the results shown in Fig. 1(a). Note that
D f

J = D f
e + D f

ion+diel can be split into an electronic and

an electrolyte part, where D f
e = (−e/ASC)

∫
SC z f J

e (r) dr and

D f
ion+diel = (e/ASC)

∫
SC z f J

ion+diel(r) dr, and accordingly

1

Ctot
= D f

e

ε0e
+ D f

ion+diel

ε0e
= 1

C f
e

+ 1

C f
ion+diel

. (20)

Whereas D f
J is invariant with respect to a shift of the z origin,

D f
e and D f

ion+diel depend on the choice of the z = 0 plane, and
the splitting (20) is not unique. It is interesting to note that the
effective image plane location zim of a metal surface is given
by the center of mass of the electronic excess charge [41,42],
which is essentially equal to the electronic part of the Fukui
surface dipole, zim = ∫

SC z f J
e (r) dr = (−ASC/e)D f

e . Choos-

ing the origin zim = 0 thus corresponds to D f
e = 0, and the

total interface capacitance Ctot = C f
ion+diel is entirely defined

by the electrolyte side. The nature of the electrode material
still enters via the potential-dependent zim [19]. Depend-
ing on the details of the electrolyte model, the electrolyte
Fukui surface dipole can be further split. If, e.g., there is a
Helmholtz layer that is free of ionic charges between the elec-
trode surface at zim = 0 and an outer Helmholtz plane (OHP)
at zOHP, then

∫ ∞
zOHP

〈 f J
ion+diel〉ASC dz = 1/ASC because of the

overall normalization of the ionic Fukui function (〈· · · 〉ASC de-
notes the area average). It follows that D f

ion+diel = D f
H + D f

GC,

where D f
H = (e zOHP/ASC) + ∫ zOHP

0 e z 〈 f J
diel〉ASC dz and D f

GC =∫ ∞
zOHP

e (z − zOHP) 〈 f J
ion+diel〉ASC dz are the Fukui surface dipoles

across the Helmholtz layer and the diffuse Gouy-Chapman
layer, respectively. In combination with Eq. (20) and D f

e = 0
(due to the choice of origin zim = 0), we obtain the com-
monly employed spatial partitioning of the electrochemical
double-layer capacitance into a Helmholtz capacitance CH and

a Gouy-Chapman capacitance CGC [42],

1

Ctot
= D f

H

ε0e
+ D f

GC

ε0e
= 1

CH
+ 1

CGC
. (21)

The previous considerations for bulk metal electrodes led
to a particularly simple form of the total interface capacitance.
However, for thin metal electrodes, as well as for materi-
als with space-charge behavior or exotic DOS, the various
capacitive contributions are nontrivial and Eqs. (16)–(18) en-
able their rigorous quantification. This is exemplified by the
computational results presented in Fig. 1 that were obtained
using the VASPSOL implicit electrolyte model [28], where the
ionic and dielectric charge densities ρion = −ε0εrκ

2(φ − φ0)
and ρdiel = ε0∇[χ∇φ] are approximated as linear response
to the electrostatic potential and field, respectively, with the
electric susceptibility χ and relative permittivity εr = 1 + χ

of the electrolyte, and the inverse Debye length κ = 1/λD.
A single (111) layer of gold has a remarkably flat DOS
around the Fermi energy [see inset of Fig. 1(c)]. The resulting
quantum capacitance is almost constant, but it contributes
significantly to the total capacitance [see Fig. 1(c)]. Note that
the negative XC capacitance also comprises the contribution
of the electrolyte boundary functional to the local KS potential
in VASPSOL [28]. The slope in 1/Cdl results from the elec-
trolyte boundary moving closer to the electrode surface with
increasing electrode potential, i.e., decreasing surface elec-
tron density. Figure 1(d) shows the inverse total capacitance
according to Eq. (17) for single-layer graphene at different
temperatures. The total capacitance is largely determined by
the Dirac cone in the temperature-dependent DOS gT

D(ε),
which becomes softened at increasing temperature [see inset
of Fig. 1(d)]. These results demonstrate how Eqs. (16) and
(17) provide detailed insight into the factors that determine
the charging characteristics of complex electrode-electrolyte
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interfaces, including the influence of the electrode material,
thickness, and temperature.

In summary, we resolved the apparent conflict between the
piecewise linearity requirement and the concept of capaci-
tance in density functional theory. Within a conceptual JDFT
framework, we rigorously derived the commonly employed
partitioning of the capacitance of an electrode-electrolyte in-
terface, highlighting the central role of the LDOS and the
joint Fukui function, which includes the ionic and dielectric
response of the electrolyte. We conclude with an outlook on
how these quantities can be calculated. Obviously, the LDOS
results directly from a self-consistent JDFT solution of the
KS equations (1) and (2) together with, e.g., the linearized
Poisson-Boltzmann equation, depending on the electrolyte
model employed. The Fukui functions are more compli-
cated to obtain, e.g., from finite differences in N . However,
since they quantify the linear response of the joint system,
they should also be directly computable from a single JDFT

solution. In fact, Cohen et al. [34] showed that the local
softness in DFT is given by a linear mapping of the LDOS.
Because the DFT Fukui function is equal to the normalized
local softness [10], the former is fully determined by the
LDOS, demonstrating the importance of the LDOS in chemi-
cal reactivity theory [43]. We foresee a similar relation to hold
between the Fukui functions and LDOS in conceptual JDFT.
Finally, it should be emphasized that the present analysis is
strictly valid for a fixed external potential, i.e., atom core
positions. Filhol and Doublet [44] demonstrated how surface
structural relaxation contributes to the effective capacitance
and can be treated in a conceptual DFT description of surface
electrochemistry. Combined with their analysis, the present
approach will be generalized to include effects of surface atom
displacements and adsorbates.

This work was funded by the SNSF (Swiss National Sci-
ence Foundation) in the form of a research fellowship grant.
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