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Perturbative approach to the polaron shift of excitons in transition metal dichalcogenides
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In this Letter, we study the effect of phonons on the position of the 1s excitonic resonance of the fundamental
absorption transition line in two-dimensional transition metal dichalcogenides. We apply our theory to WS2,
a two-dimensional material where the shift in the absorption peak position has been measured as a function
of temperature. The theory is composed of two ingredients only: (i) the effect of longitudinal optical phonons
on the absorption peak position, which we describe with second-order perturbation theory, and (ii) the effect
of phonons on the value of the single-particle energy gap, which we describe with the Huang Rhys model.
Our results show excellent agreement with the experimentally measured shift of the absorption peak with the
temperature.
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One of the most prominent and studied types of two-
dimensional materials are transition metal dichalcogeniedes
(TMDs) [1]. These, often semiconducting, materials present
remarkable electronic and optical properties, intrinsically
related to their excitonic response. An exciton is a quasipar-
ticle corresponding to a bound electron-hole pair interacting
via a Coulomb-like potential. Due to the reduced dielectric
screening in two-dimensional materials, these quasiparticles
are more tightly bound, and thus more stable, than their
three-dimensional analogues. Phonons, the quanta of atomic
vibrational energy, are known to have a significant impact
on the optical properties of TMDs, especially due to their
interaction with excitons [2–5]. The exciton-phonon coupling
influences both the linewidth and the peak position of the
different absorption resonances associated with the optically
active excitonic states in TMDs. Indeed, this effect has been
reported recently in Ref. [6], where it was shown that the 1s
excitonic peak was redshifted as the temperature increased,
accompanied by a concomitant increased linewidth of the res-
onance. The coupling of phonons to excitons also affects their
radiative lifetime and allows the access to optically dark states
via intervalley scattering channels [7]. Studies on the temper-
ature dependence of the optical properties of these materials
are highly relevant to accurately predict their applicability
in different technological applications which are required to
work at room temperature.

The problem of electron-phonon interaction is by no means
a simple one, giving rise to, for example, phonon-mediated
supercondutivity and the polaron problem, an electron dressed
with a cloud of phonons. While the former problem can be
dealt with an approximate canonical transformation, the latter
one is, in general, nonperturbative. Nonetheless, to address
the effect of phonons on the position peak of the absorp-
tion resonance a perturbative approach, up to seconder in
the electron-phonon interaction, suffices. However, as derived
from traditional perturbation theory, we end up with a sum

over all states of the noninteracting problem, whose effective
summation is out of reach simply because it requires all the
eigenstates of the noninteracting system, which may not be
known. Even in the cases where they are known, the inte-
grals are of insurmountable difficulty. Therefore, we follow
a different path for circumventing the sum over states. We
use the Dalgarno-Lewis approach [8] which shifts the sum
over states problem to the solution of a nonhomogeneous
differential equation. In this procedure, only one eigenstate of
the unperturbed theory is required together with the solution
of the aforementioned differential equation.

In this Letter, we consider a two-dimensional TMD whose
electrons and holes, interacting via a Coulomb-like potential,
may give rise to exciton formation. To study the effect of
temperature on the excitonic properties, we use a similar
model to the one employed in Ref. [9], where a Fröhlich-like
Hamiltonian [10] was used to characterize the interaction of
optical phonons with electrons and holes in polar crystals.
Contrary to Ref. [9], where 3D systems were considered, we
will focus on excitons on 2D materials, leading to a difference
in the form of the interaction term [11]. Moreover, contrary
to the aforementioned work where only the case of T = 0 K
was considered, our calculations cover any temperature
value.

The Hamiltonian of the considered system in the center-of-
mass frame of the electron-hole pair reads

H = H0 + H1 + H2 + H3 + H4, (1)

where

H0 = p2

2μ
+ V (r), H1 =

∑
q

h̄ωqa†
qaq,

H2 = − U

A1/2

∑
q

i√
q

aqeiq·(mh/M )r + H.c.,
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H3 = U

A1/2

∑
q

i√
q

aqe−iq·(me/M )r + H.c.,

H4 = 1

2M

(
K −

∑
q

h̄qa†
qaq

)2

.

The term H0 is the Hamiltonian of the exciton, with me/h the
electron/hole effective mass, μ−1 = m−1

e + m−1
h the reduced

mass of the electron-hole pair, p their relative momentum, r
their relative position vector, and V (r) the electron-hole in-
teraction potential which we model using the Rytova-Keldysh
potential [12,13],

V (r) = − e2

4πε0

π

2r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (2)

where e is the elementary charge, ε0 is the vacuum permittiv-
ity, κ is the mean dielectric constant of the media above and
below the TMD monolayer, r0 is a material-dependent screen-
ing length (which is microscopically related to the material’s
polarizability), H0 is the Struve function of the first kind, and
Y0 the Bessel function of the second kind, both of order zero.
In the total Hamiltonian, the term H1 describes the thermally
excited phonons and a†

q/aq refers to the creation/annihilation
operator of a phonon with momentum q and energy h̄ωq.
Here, we only consider the contribution originating from
longitudinal-optical (LO) phonons. Also, we will consider
that the energy h̄ωq is independent of momentum and equal to
a constant value h̄ωLO when numerical results are computed
(that is, the Einstein model). The terms H2 and H3 correspond
to the interaction between the phonons and the electrons and
holes, A is the area of the 2D monolayer, M = me + mh, and
U is the coupling potential defined as [11]

U = h̄ωLO
(√

2πα
)1/2

(
h̄

m0ωLO

)1/4

, (3)

with m0 the bare electron mass and α a dimensional coupling
constant, which we will consider as a fitting parameter, and

whose typical value lies between 2–5 [11]. Finally, the term
H4 depends on the center-of-mass momentum K. It is not, in
general, expected that a term which depends on the center-of-
mass momentum will play a significant role in the system’s
internal dynamics and, as a result, just like in Ref. [9], we
neglect its contribution to H, that is,

H ≈ H0 + H1 + H2 + H3. (4)

Now, to compute the effects of the coupling of the excitons
to the LO phonons, we will follow a perturbative approach,
taking H0 + H1 as the unperturbed Hamiltonian and H2 + H3

as the perturbative term. From second-order perturbation the-
ory, we write the energy correction to the system’s ground
state as

�E =
∑
νX νph

|〈1s; nph(T )|H2 + H3|νX ; νph〉|2
EGS − EνX νph

, (5)

where νX and νph refer to the states of the exciton and the
phonons, respectively, with a combined energy EνX νph , while
1s refers to the most tightly bound excitonic state and nph(T )
corresponds to the phonon distribution at a temperature T ,
with a combined energy EGS. The sum runs over all the νX

and νph except {νX , νph} = {1s, nph(T )}. A direct evaluation
of Eq. (5) would undoubtedly be a daunting task, with little
probability of success, since all the excitonic wave functions
would be required and an infinite number of matrix elements
would have to be evaluated. As an alternative route, one can
follow the Dalgarno-Lewis approach [8] to bypass the sum
over states. This ingenious approach consists on the introduc-
tion of an operator, defined through a differential equation,
which when inserted in Eq. (5) allows the sum over states to
be removed. The problem of computing �E is then reduced
to the evaluation of a single matrix element. In a more de-
tailed manner, we start by writing Eq. (5) as the sum of four
contributions

�E = �E1 + �E2 + �E3 + �E4, (6)

where

�E1 = U 2

A

∑
νX

∑
q

1

q

{
nph(q, T ) + 1

E1s − EνX − h̄ωq
〈1s|e−iq·(me/M )r|νX 〉〈νX |eiq·(me/M )r|1s〉

+ nph(q, T )

E1s − EνX + h̄ωq
〈1s|eiq·(me/M )r|νX 〉〈νX |e−iq·(me/M )r|1s〉

}
(7)

and

�E3 = − U 2

A

∑
νX

∑
q

1

q

{
nph(q, T ) + 1

E1s − EνX − h̄ωq
〈1s|e−iq·(me/M )r|νX 〉〈νX |e−iq·(mh/M )r|1s〉

+ nph(q, T )

E1s − EνX + h̄ωq
〈1s|e−iq·(mh/M )r|νX 〉〈νX |e−iq·(me/M )r|1s〉

}
, (8)

with E1s and EνX the energies of the 1s and νX excitonic
states, respectively, and nph(q, T ) the Bose-Einstein distribu-
tion function for phonons with energy h̄ωq at a temperature T .

Here, we still consider the phonon energy as a function of the
momentum to present general expressions, but later we will
consider ωq = ωLO. The expressions for �E2 and �E4 follow
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directly from these two by replacing me(mh) with mh(me).
Since in TMDs the effective masses of electrons and holes
are similar, the contribution of �E1 is comparable to �E2 and
an analogous statement is valid for �E3 and �E4. Each of
the four contributions is made up of two terms with distinct
physical origin: one originating from phonon emission and
the other from phonon absorption. In the limit of vanishing
temperature, only the former contributes due to the process of
spontaneous phonon emission.

As we mentioned before, to forego the sum over states, we
make use of Dalgarno and Lewis’s formulation of perturbation

theory. To evaluate �E1, we introduce two operators F1±
which obey the relations

([F1±, H0] ± h̄ωqF1±)|1s〉 = e∓iq·rme/M |1s〉. (9)

Now, we apply these to Eq. (7), remove the sum over states,
and introduce three complete sets of plane waves. Doing
so, and taking advantage of the orthogonality relation be-
tween plane waves, one finds the following expression for
�E1:

�E1 = −2μ

h̄2

U 2

A

∑
q

∑
k

1

q
[nph(q, T ) + 1]

〈1s|k〉〈k|1s〉
q2

(me
M

)2 + 2k · q me
M + 2μωq/h̄

−2μ

h̄2

U 2

A

∑
q

∑
k

1

q
nph(q, T )

〈1s|k〉〈k|1s〉
q2

(me
M

)2 + 2k · q me
M − 2μωq/h̄

. (10)

Comparing Eqs. (7) and (10), we note that with the approach
of Dalgarno and Lewis the problem of computing �E1 was
drastically modified. While in Eq. (7) the knowledge of all
the excitonic states was required, in Eq. (10) only the Fourier
transform of the 1s state wave function is needed. Moreover,
the complexity of the calculations was greatly reduced, since
now we need only compute two sums over the momenta q and
k, while previously the computation of an infinite number of
matrix elements was required. Finally, we note that in Eq. (10)
the operators F1± are absent, since we do not need them
explicitly but rather the expression for their matrix element
between plane waves, which can be computed from Eq. (9). To
progress analytically, we follow a variational path to describe
the wave function of the 1s excitonic state. Our variational
ansatz, inspired by the Hydrogen atom, reads [14]

ψ1s(r) = a

√
2

π
e−r/a, ψ1s(k) = 2a

√
2π

(1 + a2k2)3/2 , (11)

where a is a variational parameter determined from the min-
imization of the expectation value of H0, and can be linked
to the excitonic Bohr radius. This choice of the trial func-
tion produces results in good agreement with the ones found
using exact numerical methods. A more sophisticated ansatz
combining two exponential functions [15] could also be used.
This option would produce results in perfect agreement with
the numerical ones, with the cost of more involved calcula-
tions, without a simple analytical solution. In any case, the
choice of one of the ansätze over the other should produce
only minimal changes in the final result. To continue with the
calculation of �E1 the sums over q and k must be converted
into two-dimensional integrals. From this point onward, we
explicitly consider that ωq = ωLO; as a consequence the terms
nph(q, T ) become momentum independent and can be taken
out of the integrals. Working in polar coordinates, one finds
the following angular integral:

∫ 2π

0

dθ

σ± + k cos θ
=

{
signσ± 2π√

σ 2±−k2
, |σ±| > 1

0, |σ±| < 1,
(12)

where σ± = (q2 ± 2μωLO)/2q. When |σ±| < 1, the principal
value of the integral should be considered. We now note that
for the second term in Eq. (10), the one associated with ab-
sorption of phonons, signσ− = ±1 depending on the value of
q. The same does not apply to the other contribution, where
σ+ > 0 ∀ q � 0. As a consequence of the two possible signs
that originate from the angular integration, when the integrals
over dk and dq are computed, the phonon absorption contri-
bution from �E1 (and �E2 after the roles of me and mh are
switched) vanishes. Computing the remaining integrals, we
find

�E1 = −4mh

π h̄2 U 2a2[nph(ωLO, T ) + 1], (13)

×
[
π (χ2

+ − 1)(4χ2
+ + 3)

32a3β2χ3+
+ f+

]
, (14)

with χ+ = 1 + a2β2, β2 = 2μωLO/h̄ and

f+ =
∫ ∞

0

1

16q

3arcsinh[aζ+(q)]

a[1 + a2ζ 2+(q)]5/2 dq ≈ 3

8πa
, (15)

where ζ+(q) = (q2 + β2)/2q. Numerically, for WS2 on SiO2,
the value of f+ is roughly less that one-half of the the term
with which it is summed. As we have already mentioned, the
contribution �E2 is obtained from �E1 by substituting mh

with me.
Now that �E1 and �E2 were computed, we turn our focus

to the contributions �E3 and �E4. The process to compute
these terms is very much like the one described for the other
two. Similarly to before, we start by defining the opera-
tors F3± which obey the relation ([F3±, H] ± h̄ωqF3±)|1s〉 =
e−iq·(me/h/M )r|1s〉. The introduction of these operators in Eq. (8)
allows us to remove the sum over states. After the plane-wave
basis has been introduced and its orthogonality relations
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employed, we arrive at the following expression:

�E3 = − 2μ

h̄2

U 2

A

∑
q

∑
k

1

q

{
[nph(q, T ) + 1]

〈1s|k〉〈k + q|1s〉
q2 [2me+mh]mh

M2 + 2k · q mh
M − 2μωq/h̄

+ nph(q, T )
〈1s|k〉〈k + q|1s〉

q2 [2mh+me]me
M2 + 2k · q me

M + 2μωq/h̄

}
. (16)

Comparing this result with Eq. (10), we note that in the
present case the Fourier transforms of the 1s wave function are
evaluated at different momenta; this is a consequence of the
different complex exponentials that appear in Eqs. (7) and (8).
This modification significantly increases the complexity of the
integrals that must be computed, preventing the existence of a
simple analytical solution. However, the angular integrals can
still be computed analytically, yielding∫ 2π

0

dθ

[ξ± + cos θ ][δ + cos θ ]3/2

= −4
(1 + ξ±)E

(
2

1+δ

) − (δ − 1)�
(

2
1+ξ±

∣∣ 2
1+δ

)
(1 + ξ±)

√
δ + 1(δ − 1)(δ − ξ±)

, (17)

where E(x) and �(x|y) are elliptic integrals of the second and
third kinds, respectively, δ = (a−2 + k2 + q2)/2kq > 1 and
ξ± = (q2 [2mh/e+me/h]

M ± 2mh/eωLO

h̄ )/2kq. This solution is valid for
both |ξ±| > 1 and |ξ±| < 1. For the latter case, the principal
value of the integral should be considered. The remaining
integrals over dk and dq do not yield analytical solutions and
as a consequence must be evaluated numerically, taking the
principal value of the integral when necessary. When doing so,
one must proceed carefully, starting by determining the points
where poles and branch cuts appear. These points correspond
to the ones where the the conditions ξ− = −1 and ξ± = 1 are
satisfied.

Up to this point, we have described and given equations
that characterize the exciton-phonon interaction. As an ap-
plication of the results so far derived, we will produce a
theoretical description of the experimental data presented in
Ref. [6], where the shift of the 1s excitonic resonance of
WS2 was measured as a function of the temperature. To ac-
curately describe this effect, we must consider something so
far ignored. As the temperature increases, two distinct effects
take place. On the one hand, the exciton-phonon interaction
modifies the exciton binding energy, shifting the excitonic
peak; this is the effect we have theoretically described using
the Dalgarno-Lewis formulation of perturbation theory. On
the other hand, the band gap decreases as the temperature
increases, also contributing to the excitonic resonance shift.
To describe this effect, the Varshni empirical model [16]
is commonly used, however, here we consider the vibronic
model of Huang and Rhys [17], taking into account the effect
of acoustic phonons,

Eg(T ) = Eg(0) − S〈h̄ωA〉
[

coth
〈h̄ωA〉
2kBT

− 1

]
, (18)

where Eg(T ) is the band gap magnitude at a temperature T ,
〈h̄ωA〉 is the mean energy of the acoustic phonons (about
10 meV [18]), kB is the Boltzmann constant, and S is a fitting
parameter of the order of 1, describing the electron-acoustic-

phonon coupling. The expression for the 1s resonance position
as a function of T , which we label as EX (T ), relative to its
position at T = 0 K, reads

EX (T ) − EX (0) = − S〈h̄ωA〉
[

coth
〈h̄ωA〉
2kBT

− 1

]

+ EB(T ) − EB(0), (19)

where EB(T ) < 0 is the 1s state binding energy at a tempera-
ture T . This quantity can be obtained using [9]

EB(T ) = EB(0) + �E (T ) + 2αh̄ωLO, (20)

where EB(0) is the 1s binding energy of the unperturbed
system, that is, when no phonons are present (T = 0 K),
�E (T ) = �E1 + �E2 + �E3 + �E4 and 2αh̄ωLO is the sum
of the free electron and hole polarons (where we assumed
that α is approximately the same for electrons and holes).
We stress that the temperature dependence in �E appears
from the Bose-Einstein distribution function. Using Eq. (19),
we performed a fit to the experimental data of Ref. [6].
The comparison between our theoretical description and the
experimental results is depicted in Fig. 1; the parameters
are presented in Table I. Inspecting Fig. 1, we observe ex-
cellent agreement between our theoretical description and
the experimental data points. At room temperature, the gap
renormalization is responsible for a shift of approximately
65 meV while the polaron shift contributes with approxi-
mately 15 meV, in rough agreement with the values found
in Ref. [7]. Analyzing the content of Table I, we note that
the fitting parameters, α, 〈h̄ωA〉, and S are in agreement with
results previously found in the literature. The value of α lies
inside the interval between 0 and 5 indicated in Ref. [11].
The value of 〈h̄ωA〉 matches the one obtained in Ref. [18] and
used in Ref. [21], where MoSe2 was studied. In Ref. [18], a
value of S = 1.93 was found for MoSe2. Using the fact that
this parameter, which characterizes the coupling to phonons,
should be proportional to the square root of the effective

TABLE I. Parameters used to model the problem and the fitting
parameters. The distances are given in Å, the masses in units of
the electron bare mass, and the energies in meV. The value of κ

corresponds to the mean dielectric constant of vacuum and SiO2. The
value of r0 was taken from Ref. [19] and the values of me and mh from
Ref. [20]. The value of a was obtained from the minimization of H0

using the parameters just mentioned. The value for the LO phonons
energy was taken from Ref. [18]. The values of α, 〈h̄ωA〉, and S were
obtained from the fit of the theoretical model to the data of Ref. [6].

κ r0 me mh a h̄ωLO α 〈h̄ωA〉 S

2.4 37.9 0.35 0.26 15 43 2 11 1.32
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FIG. 1. Comparison between the fit obtained with Eq. (19) and
the experimental data of Ref. [6]. An excellent agreement between
the theoretical description and the experimental points is evident.
Also depicted are the isolated contributions of the polaron shift and
the gap renormalization described with the Huang-Rhys model. The
value of the fitting parameters is given in Table I.

masses, and noting that the effective masses in MoSe2 differ
from those in WS2 approximately by a factor of 0.72 [20], we
can estimate that the value of S in WS2 should be around 1.3,
in total agreement with the value we found.

In summary, using the Dalgarno-Lewis formulation of
second-order perturbation theory, we have successfully de-
scribed a set of experimental data-points on the effect of
temperature on the position of the 1s excitonic resonance in
WS2 [6]. The experiment shows a redshift of the absorption
line when the temperature increases. We were able to describe,
in quantitative terms, the observed shift considering two dif-
ferent effects: the polaron shift and the renormalization of the
single-particle gap with temperature. Both effects were shown
to produce a sizable effect to the overall redshift and should be
accounted for in theoretical descriptions of this phenomenon.
We stress that both effects are due to different set of phonons:
the longitudinal optical phonons in the intrinsic red shift of the
absorption line and the acoustic phonons in the modification
of the single particle gap. Although we considered a Fröhlich-
like Hamiltonian and only took into consideration the effect of
optical phonons in the perturbative treatment, this approach
could be generalized to include other contributions, such as
the deformation-potential coupling and the contribution of
acoustic phonons (whose integrals would have to be computed
numerically due to the linear dispersion relation). The role of
acoustic phonons would mainly be a continuous broadening
close to the main resonance [7].
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