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Spontaneous current orders due to odd-parity order parameters have attracted increasing attention in various
strongly correlated metals. we discover a spin-fluctuation-driven charge loop current (cLC) mechanism based
on the functional renormalization group theory. The present mechanism leads to the ferro-cLC order in a simple
frustrated chain Hubbard model. The cLC appears between the antiferromagnetic and d-wave superconducting
(dSC) phases. While the microscopic origin of the cLC has a close similarity to that of the dSC, the cLC
transition temperature TcLC can be higher than the dSC one for a wide parameter range. Furthermore, we reveal
that the ferro-cLC order is driven by the strong enhancement of the forward scatterings g2 and g4 owing to the
two dimensionality based on the g-ology language. The present study indicates that the cLC can emerge in metals
near the magnetic criticality with geometrical frustration.
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Various exotic symmetry-breaking phenomena are recent
central issues in strongly correlated metals. For instance, the
violation of rotational symmetry, the so-called nematic order,
has been intensively studied in Fe-based [1–7] and cuprate
[8–17] superconductors in addition to heavy fermion com-
pounds [18,19]. Many kinds of even-parity and time-reversal
invariant unconventional orders, such as the orbital order
[5–7], the d-wave bond order [8–16], and the spin-nematic
order [1–4], have been proposed as candidates for the nematic
order. (Bond order is the symmetry breaking in correlated
hopping integrals.) Although the microscopic mechanism of
the nematicity is still under debate, it is believed that many-
body effects beyond the mean-field theory are significant
[1–19].

When unconventional order violates the parity and/or
time-reversal symmetries, more exotic phenomena emerge.
For example, parity-violating bond order induces a sponta-
neous spin current [20,21]. Also, time-reversal violating order
causes a static charge current, which accompanies the inter-
nal magnetic field that is measurable experimentally. Various
charge loop currents (cLCs), such as the intraunit cell cLC
[22,23] and antiferro-cLC [24–30], have been discussed. In
square lattice models, the cLC due to nonzero spin chirality
has been studied based on SU(2) gauge theory [31,32]. In ad-
dition to that, the generalized Hubbard ladder system has been
studied by functional renormalization group and bosonization
[33,34].

Recently, some experimental evidence for the cLC order
has been reported. For instance, in quasi-one-dimensional
(1D) two-leg ladder cuprates, polarized neutron diffraction
(PND) reveals broken time-reversal symmetry [35] and con-
cludes that the cLC appears. The cLCs are also reported in
cuprates [36,37] and iridates [38] by PND studies, and their
existence is supported by optical second harmonic generation
(SHG) [39,40], Kerr effect [41], and magnetic torque [42]
measurements.

These observations indicate the existence of a universal
mechanism of the cLC that is closely related to the magnetic
criticality. However, its microscopic origin is still unknown.
Based on a simple Hubbard model with an on-site Coulomb
interaction U , mean-field theories fail to explain the cLC.
Therefore, off-site Coulomb and Heisenberg interactions have
been analyzed [20,25]. However, the off-site bare interac-
tion is much smaller than U in the usual metals. Then, we
encounter the following essential questions: What is the min-
imum model to understand the cLC? What is the relation
between cLC and magnetic criticality?

In this Letter, we propose a spin-fluctuation-driven cLC
mechanism based on the functional renormalization group
(fRG) theory [43–52]. Here, we optimize the form factor,
which characterizes the essence of the unconventional or-
der, unbiasedly based on the Lagrange multiplier method.
By virtue of this method, the ferro-cLC order is obtained
without bias in a simple frustrated chain Hubbard model given
in Fig. 1(a). We discover that the cLC appears between the
antiferromagnetic (AFM) phase and d-wave superconducting
(dSC) phase as schematically shown in Fig. 1(b). The present
theory indicates that cLC can emerge in strongly correlated
electron systems with geometrical frustration.

The dimensional crossover in the coupled chain model
has been studied intensively for years [53–58]. For T �
t⊥, each Hubbard chain is essentially independent because
the thermal de Broglie wavelength is extremely short. For
T � t⊥, interchain coherence is established, and therefore a
quasi-two-dimensional Fermi liquid (FL) state with a finite
quasiparticle weight is realized. In the latter case, the one-loop
fRG method is very useful since the incommensurate nesting
vector of the Fermi surface (FS) is accurately incorporated
into the theory. In g-ology language [53–59], the cLC order
in the present theory is caused by the strong renormaliza-
tion of the forward scatterings g2 and g4 owing to the two
dimensionality.
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FIG. 1. (a) Lattice structure with intra- (t) and inter- (t⊥) chain
hoppings. (b) Schematic phase diagram. The cLC phase appears
between the AFM and dSC phase.

Here, we study quasi-one-dimensional (Q1D) electron sys-
tems described by Ĥ = Ĥ0 + Ĥ ′. The kinetic term is Ĥ0 =∑

kσ εkc†
kσ

ckσ , where c† is a creation operator for the electron
with the momentum k and spin σ . The energy dispersion
is simply given by εk = −2t cos kx − 2t⊥{cos ky + cos(kx +
ky)} − μ with t = 1 and the chemical potential μ. The inter-
chain hopping t⊥ (�1) controls the dimensionality; t⊥ → 0
corresponds to a complete 1D system. We also introduce an
on-site Coulomb interaction Ĥ ′ = ∑

i Uni↑ni↓ where i is the
site index.

Now, we perform the fRG method to derive an effective
low-energy interaction. In the present numerical study, we
divide each left-Brillouin zone (BZ) and right-BZ into 24
patches. The center points of the patches pi are shown in
Fig. 2(a) and the Supplemental Material A (SM A) [60]. Here,
we introduce a logarithmic energy scaling parameter �l =
�0e−l (0 � l � lc) for �0 = 3, which is slightly larger than
maxk |εk| 	 2.8. In the following numerical study, we con-
sider the half-filling case and put lc = 8.7 (�lc = T/100) and
U = 2.01 in the unit t = 1. Also, we fix (t⊥, T ) = (0.2, 0.05)
except for the phase diagram in Fig. 3. During the fRG anal-
ysis, the low-energy effective interaction changes with the
cutoff �l . It is represented on the patches as

Ĥ ′
eff = 1

4

∑
{pi}

gp1 p2 p3 p4 c†
p1

cp2 cp3 c†
p4

, (1)

where ĝ is antisymmetric four-point vertex function with
patch pi and spin index where pi ≡ (pi, σi ). ĝ is de-
fined in Fig. 2(b), and its initial condition is gp1 p2 p3 p4 =
Uδp1+p4,p2+p3

(δσ1,σ3δσ2,σ4 − δσ1,σ2δσ3,σ4 ). Then, ĝ is calculated
by solving the one-loop RG equation,

d

d�l
gp1 p2 p3 p4 =

∑
pp′

[
1

2

dW −
p,p′

d�l
gp1 pp′ p4 gpp2 p3 p′

+ dW +
p,p′

d�l
(gp1 p3 pp′gpp′ p2 p4 − gp1 p2 pp′gpp′ p3 p4 )

]
,

(2)

where W ±
p,p′ = T

∑
kk′n GknGk′±n�p(k)�p′ (k′). Here, Gkn ≡

(iεn − εk)−1θ (�l − |εk|), and �p(k) = 1 (0) only if the mo-
mentum k is inside (outside) the p patch. Here, εn is the
fermion Matsubara frequency. The first term on the right-hand
side of Eq. (2) is the particle-particle loop [=Cooper-channel
(ch)], and the second and third terms are the particle-
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FIG. 2. (a) FS with center positions of the patches. (b) Four-
point vertex function ĝ. (c) Susceptibility with the form factor f q

p .
(d) Development of χ c(q) at q = 0, which leads to the ferro-cLC.
(e) Spin susceptibility with the peak at q = (π, π/2). (f) Obtained
charge-channel form factor f q=0

k (∝ sin kx + b sin 3kx). (g) Schematic
picture of the cLC.

hole loops (=Peierls-ch). Their diagrammatic expressions are
given in SM A [60].

Here, we calculate the particle-hole susceptibilities, which
are essentially given by the four-point vertex function in
Fig. 2(c). The static charge (spin)-ch susceptibilities with the
form factor f q

k are defined by

χ c(s)(q) =
∫ T −1

0
dτ

1

2
〈Ac(s)(q, τ )Ac(s)(−q, 0)〉,

Ac(s)(q, τ ) ≡
∑
kσσ ′

σ
0(z)
σσ ′ f q

k c†
k+qσ

(τ )ckσ ′ (τ ), (3)
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FIG. 3. (a) Obtained phase diagram. The cLC appears in the FL
regime. (b) Temperature dependence of the susceptibilities for the
charge-ch (dotted line) and spin-ch (solid line).
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where τ is imaginary time. σ̂ 0 is the identity matrix and
σ̂ z is the Pauli matrix. Here, we optimize the form factor
f q
k unbiasedly to maximize χ c(q) at each q point using the

Lagrange multiplier method; see SM A [60].
The form factor corresponds to the modulation of the cor-

related hopping integral from j to the i site, δti j (i �= j). It
is given as δti j = �t

∑
k f q=0

k eik(ri−r j ) for the uniform mod-
ulation. Here, both the bond order (δti j = δt ji) and the cLC
(δti j = −δt ji) are described. Due to the Hermite condition,
δti j for the cLC order is purely imaginary. In Figs. 2(d)
and 2(e), we plot the q dependence of the charge- and spin-ch
susceptibilities, respectively. The strong charge-ch fluctua-
tions develop at q = 0, while the spin fluctuations remain
small even at the peak q = (π, π/2) ≡ QAFM. Figure 2(f)
shows the charge-ch form factor at q = 0. For a fixed ky,
the relation f 0

kx
	 − f 0

−kx
(∝ sin kx + b sin 3kx) holds. Then, the

real-space order parameter is δti j = −δt ji that leads to the
emergence of ferro-cLC order. The third-nearest-intrachain
form factor derived from the present fRG is significant for
realizing the cLC [60]. In Fig. 2(g), we show the schematic
picture of the cLC, which is a magnetic-octupole-toroidal
order. A detailed explanation of the numerical results is shown
in Fig. S4 in SM B [60].

In Fig. 3(a), the obtained phase diagram in the T -t⊥ space
is plotted. We reveal that the cLC phase appears around
t⊥ 	 0.2 as an intertwined order between the AFM and dSC
states. Note that the dark shaded area is the 1D Mott insulating
phase that is beyond the scope of the present study [55,56]. In
addition, Fig. 3(b) shows the T dependence of the χ c(0) and
χ s(QAFM). χ c(0) drastically develops at low temperatures.
The transition temperatures in Fig. 3(a) are determined under
the condition that the largest susceptibility (spin, charge, dSC)
exceeds χmax = 30, while the phase diagram is insensitive to
χmax (�10), as recognized in Fig. 3(b). As a result, the cLC
phase is stabilized in the FL region around t⊥ � T .

To understand the origin of the cLC, we analyze the charge
(spin)-ch four-point vertex function defined by

gc(s)
pp′ (q) ≡ gp↑p+q↑p′↑p′+q↑ + (−)gp↑p+q↑p′↓p′+q↓. (4)

In Fig. 4(a), we plot the patch dependence of the charge-
ch four-point vertex gc

pp′ (0). The relation gc
RR′ (0) ≈ −gc

LR(0)
holds, where R = 1–24 (L = 25–48) is the patch index in the
right (left) branch. We also plot the flow (l dependence) of
the four-point vertex in Fig. 4(b). gc

RR′ (0) comes to be a large
negative value, while gc

LR(0) takes a large positive value.
In order to explain why the odd-parity form factor is ob-

tained, we introduce ḡc(s)
RR (q), ḡc(s)

LR (q), f̄ 0
R , f̄ 0

L as their maximum
values in the patch space. In this case, the charge-ch suscepti-
bility is

χ c(0) ∝ −(
f̄ 0
R

)2
ḡc

RR(0) − f̄ 0
L f̄ 0

R ḡc
LR(0), (5)

as shown in Fig. 2(c). Since ḡc
RR(0) is negative and ḡc

LR(0)
is positive, the relation f̄ 0

R = − f̄ 0
L is required to maximize

the susceptibility. In conclusion, the odd-parity cLC appears
due to the sign reversal between ḡc

RR(0) and ḡc
LR(0) in the FL

region. As for the spin-ch susceptibilities, both gs
RR(QAFM)

and gs
LR(QAFM) are negative, and therefore the spin-ch form

factor does not have any sign reversal on the FS as shown in
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FIG. 4. (a) Patch dependence of four-point vertex at q = 0. The
obtained relation gc

RR(0) ≈ −gc
LR(0) gives the ferro-cLC. (b) Flow

of gc
pp′ (0). gc

RR(LR)(0) takes a large negative (positive) value as the
cutoff energy decreases. (c) Definition of the gi in the g-ology theory.
The dotted (solid) line gives an electron on the right (left) branch.
(d) Obtained flow of gi.

Fig. S3 in SM A [60]. Thus, an ordinal AFM phase is realized
in the 1D regime.

Here, we discuss the present result in terms of the 1D
g-ology theory [54], in which the four-point vertex function
is classified into four types: backward (g1), forward (g2, g4),
and umklapp (g3) scatterings as defined in Fig. 4(c). As an
approximation, there is a one-to-one correspondence between
ḡc(s)

pp′ (q) and gi (i = 1–4) as

ḡc
RR(0) ≈ 2πvF g4, ḡc

LR(0) ≈ 2πvF (2g2 − g1),

ḡs
RR(QAFM) ≈ −2πvF g2, ḡs

LR(QAFM) ≈ −2πvF g3, (6)

where vF is the Fermi velocity.
Based on Eq. (6), we plot the flow of gi in Fig. 4(d). We

find that g4 (g2) has a large negative (positive) value as the
l increases. The present result is understood by using the
knowledge of the g-ology theory as we discuss in SM D [60]:
At half filling, g2 is relevant due to the Peierls-ch scattering
[54]. In the present Q1D model, the frustrated hopping t⊥ vi-
olates the perfect nesting condition, and therefore g2 (or AFM
fluctuation) is relatively suppressed at �l < t⊥ compared with
pure 1D systems [53–58]. On the other hand, surprisingly, g4

takes large negative values due to the Landau-ch scattering
that is important at low energies (�l < T ). As a result, 1D
AFM instability is suppressed by t⊥, and the cLC due to the
Landau-ch instead appears. [The importance of g4 on χ s(0)
was discussed in Ref. [61].] Thus, the geometrical frustration
is essential for realizing the cLC order.

Also, the cLC is naturally understood by the spin-
fluctuation-driven mechanism based on the 2D FL concept
[62–64]. To show this, we solve the “particle-hole (ph) gap
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FIG. 5. (a) The ph gap equation. The wavy line is the spin fluctu-
ations given by the RPA. (b) Obtained eigenvalue of the gap equation
at (T,U ) = (0.03, 1.65). The peak around the � point corresponds
to the cLC. (c) Obtained charge-ch form factor at q = 0, which is
essentially the same as the fRG results. (d) Dominant contribution
for stabilizing the cLC order.

equation” for the charge-ch form factor f q
k ,

λq f q
k =

∑
k′

f q
k′L(k′, q)

(
−3

2
V s

k−k′ − 1

2
V c

k−k′

)
, (7)

where λq is the eigenvalue. Here, we define V c(s)
q ≡ −(+)U +

U 2χ c(s)(q) in the random-phase approximation (RPA), and
L(k, q) ≡ (nk− q

2
− nk+ q

2
)/(εk+ q

2
− εk− q

2
) > 0 with the Fermi

distribution function nk. The diagrammatic expression of the
ph gap equation in Fig. 5(a) is given by the first-order spin-
fluctuation exchange term (= Maki-Thompson (MT)-type
process). Figure 5(b) shows the largest eigenvalue λq for gen-
eral q. The second largest peak at the � point corresponds to
the cLC since the obtained odd-parity form factor in Fig. 5(c)
is essentially the same as the results by the fRG. (Obviously,
the fRG method is superior to RPA in that loop cancellation
in 1D system is taken into account.) Figure 5(d) shows the
scattering processes generated by solving the ph gap equation.
The even (odd)-order processes with respect to χ s(QAFM)
work as interbranch repulsion (intrabranch attraction), which
corresponds to ḡc

RR < 0 (ḡc
LR > 0) in Fig. 4(a). Thus, the cLC

is naturally explained in terms of the FL concept, and this
mechanism is found to be similar to that for the dSC near the
AFM phase [55–58,65].

Furthermore, we perform the fRG without Cooper-ch pro-
cesses and confirm that the cLC is obtained even if we neglect
the Cooper-ch as shown in Fig. S5 in SM C [60]. Thus, we
conclude that the cLC emerges due to the spin-fluctuation-
driven mechanism.

Next, we discuss the dSC phase. Figure 6(a) shows the
optimized SC gap given by the fRG [15]. This dSC gap is
well understood in terms of the singlet SC gap equation with
the MT process [65],

λSC�k =
∑

k′
�k′C(k′)

(
−3

2
V s

k−k′ + 1

2
V c

k−k′

)
, (8)

-2

 0

 1.5

)b()a( SC gap equation

(c)
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-k
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FIG. 6. (a) dSC gap function obtained by the fRG. (b) SC gap
equation. (c) εk dependence of L(k, q = 0) and C(k).

where C(k) = (2nk − 1)/(2εk) > 0 and its diagrammatic ex-
pression is in Fig. 6(b). Since �k is even parity, the
interbranch repulsion by V s

QAFM
induces the nodal dSC.

Furthermore, we discuss the reason why the cLC phase
dominates over the SC phase. As shown in Fig. 6(c), C(k) in
Eq. (8) is always larger than L(k, q = 0) in Eq. (7) except at
εk = 0, reflecting the logarithmic Cooper-ch singularity [54].
On the other hand, the Cooper instability is reduced by the
intrabranch sign reversal in the dSC gap. By considering the
dominant contribution of the gap function at (k, k′,−k,−k′)
in Fig. 6(a), the effective pairing interaction for the d-wave
gap is

VdSC ∝ {2χ s(QAFM) − χ s(Q1) − χ s(Q2)} ∝ (t⊥/t )2. (9)

Thus, the d-wave Cooper instability is suppressed by the
factor (t⊥/t )2 � 1 due to the 1D nature.

If we consider an off-site Coulomb interaction V in addi-
tion to U , the cLC instability should be enhanced. In fact, the
Fock term −2V cos(k − k′) is added to V c

k−k′ in Eq. (7), and
it gives the interbranch repulsive and intrabranch attractive
interactions [20,22,23,25]. Thus, both the spin fluctuation and
finite off-site Coulomb V will cooperatively stabilize the cLC
phase.

In summary, we proposed the spin-fluctuation-driven
cLC mechanism based on the fRG theory. We derived the
optimized form factor, which is the key essence of the uncon-
ventional order, without any assumptions. By virtue of this
method, the ferro-cLC order is obtained without any bias in a
simple frustrated chain Hubbard model. For the microscopic
origin of the cLC, the strong renormalization of the forward
scatterings (g2, g4) due to spin fluctuations plays an important
role. We stress that the cLC phase in the FL regions is replaced
with the AFM phase if we remove the frustration as shown
in Fig. S9 in SM E. The role of geometrical frustration is to
realize strong short-range spin fluctuations that mediate the
cLC order. Thus, it will be useful to verify the theoretically
predicted correlation between the cLC order and spin fluctua-
tion strength in future experiments.
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ful discussions. This work is supported by Grants-in-Aid for
Scientific Research (KAKENHI) Research (No. JP20K22328,
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