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Light-induced switching of magnetic order in the anisotropic triangular-lattice Hubbard model
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The time-dependent exact-diagonalization method is used to study the light-induced phase transition of
magnetic orders in the anisotropic triangular-lattice Hubbard model. Calculating the spin correlation function,
we confirm that the phase transition from the 120◦ order to the Néel order can take place due to high-frequency
periodic fields. We show that the effective Heisenberg-model Hamiltonian derived from the high-frequency
expansion by the Floquet theory describes the present system very well and that the ratio of the exchange
interactions expressed in terms of the frequency and amplitude of the external field determines the type of the
magnetic orders. Our results demonstrate the controllability of the magnetic orders by tuning the external field.
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One of the most significant themes in condensed matter
physics concerns the presence of various long-range orders
in correlated electron systems. In particular, by intense laser-
pulse irradiation, which leads the systems to nonequilibrium
states, the creation and control of long-range orders have
recently been made feasible in experiments. Typical examples
of such attempts include possible photoinduced superconduc-
tivity in cuprates [1,2], alkali-doped fullerides [3], FeSe [4],
and organic salts [5], light-induced charge-density waves
in LaTe3 [6], and band gap control in excitonic insulators
Ta2NiSe5 via photoexcitation [7,8].

In the manipulation of nonequilibrium states, the concept
of “Floquet engineering” attracts particular attention [9,10],
where we create a nonequilibrium steady state by applying
a time-periodic external field and change the state to the
desired one by tuning the amplitude and frequency of the
field. The long-range orders in correlated electron systems can
be controlled in this manner. In the Hubbard-model Hamil-
tonian, in particular, the electric field by light irradiation is
introduced via the Peierls phase substitution into the hopping
integrals. The exchange interactions of the system under light
irradiation can thus be derived in the strong-coupling limit
of the Hamiltonian [11,12], which controls the phase of the
system accordingly. Theoretical studies made so far include
the phase transition from antiferromagnetic to ferromagnetic
order [11,13], switching of superconductivity and the charge-
density wave in an attractive Hubbard model [12,14,15], etc.
Related experiments have also been carried out in ultracold
atom systems [16]. The success of controlling the exchange
interactions has been reported as well in iron oxides [17].

In this Letter, motivated by such developments in the field,
we focus on the Hubbard model at half filling defined on the
anisotropic triangular lattice (ATL), which is one of the repre-
sentative systems with geometrical frustration. Since the frus-
trated systems have many competing orders in their ground
states, we can expect to realize the control and switching of the
orders by an external field [18–23]. The ground-state phase

diagram of our model has so far been investigated well by nu-
merical approaches, where we know that the Néel order, 120◦
order, and collinear order compete with each other [24–28].
Materials described by this model include inorganic com-
pounds Cs2CuCl4 [29] and Cs2CuBr4 [30] as well as organic
compounds such as κ-(BEDT-TTF)2Cu[N(CN)2]Cl [31] and
κ-(BEDT-TTF)2Cu2(CN)2] [32].

In what follows, we will first prepare the ATL Hubbard
Hamiltonian whose ground state is of 120◦-type antiferro-
magnetic order, and simulate the change in this quantum
state under a time-periodic external field, where we use the
time-dependent Lanczos method. Then, we will show that by
tuning the amplitude and frequency of the field, the initial
state with the 120◦ order can actually be switched to the
Néel order. This result will be interpreted using the Floquet
effective Hamiltonian obtained from the high-frequency ex-
pansion of our model. We will also perform calculations of
the quench dynamics of the Heisenberg model obtained in the
strong-coupling limit of the Hubbard model, and confirm the
validity of our Floquet analysis. We will thus demonstrate the
controllability of the magnetic orders in the frustrated spin
system by tuning the external field.

The ATL Hubbard model is defined by the Hamiltonian
[see Fig. 1(a)]

Ĥ = −t1
∑
〈i, j〉,s

ĉ†
i,sĉ j,s − t2

∑
〈〈i, j〉〉,s

ĉ†
i,sĉ j,s + U

∑
i

n̂i,↑n̂i,↓, (1)

where ĉ(†)
i,s is the annihilation (creation) operator of an electron

at site i with spin s, and n̂i,s = ĉ†
i,sĉi,s is the electron density

operator. t1 and t2 are the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) hopping integrals, respectively, and
U is the on-site Coulomb interaction. The notations 〈i, j〉
and 〈〈i, j〉〉 represent the pairs of the NN and NNN sites,
respectively. In the strong-coupling limit U/t1 → ∞ at half
filling, the Hubbard model in Eq. (1) is mapped onto the
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FIG. 1. (a) Schematic representation of the ATL Hubbard model,
where the solid and dashed lines represent the hopping integrals
t1 and t2, respectively. The area surrounded by the thick solid line
indicates the 12-site cluster used in our Lanczos calculations. (b),
(c) Schematic illustrations of (b) the Néel order and (c) 120◦ order.
(d) Spin correlation function Sz(q, t = 0) calculated for the ground
state with the Néel order [q = (π, π ), red line] and 120◦ order
[q = (2π/3, 2π/3), blue line], where we assume U/t1 = 20.

antiferromagnetic Heisenberg model defined by

Ĥeff = J1

∑
〈i, j〉

Ŝi · Ŝ j + J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j, (2)

where Ŝi is the spin-1/2 operator at site i, and J1 = 4t2
1 /U

and J2 = 4t2
2 /U are the NN and NNN exchange interactions,

respectively. The ground state of this model is of Néel type
[Fig. 1(b)] at J2/J1 < 0.83, which switches to 120◦ type
[Fig. 1(c)] at J2/J1 > 0.83 [33,34].

The time-dependent external field is introduced via the
Peierls phase. Then, the hopping integrals are modified as

tnĉ†
i,σ ĉ j,s → tne−iA(t )·(ri−r j )ĉ†

i,σ ĉ j,s, (3)

where A(t ) is the vector potential at time t . In the present
study, we use the vector potential parallel to the NNN direc-
tion, i.e., A(t ) = 1√

2
[A(t ), A(t )], where

A(t ) =
{

A0e−(t−t0 )2/2σ 2
p cos[ωp(t − t0)] (t � t0),

A0 cos[ωp(t − t0)] (t > t0),
(4)

with the amplitude A0 and frequency ωp. In the following,
we assume σp = 2.0/t1 and t0 = 10/t1. We set the Planck
constant h̄, speed of light c, elementary charge e, and lattice
constant to be unity.

Since the Hamiltonian depends on time in the presence of
an external field, we need to solve the Schrödinger equation
to obtain the time evolution of the wave function. We employ
the time-dependent Lanczos method [35,36] for this purpose.
The time evolution with a time step δt is calculated in the
corresponding Krylov subspace generated by ML Lanczos it-
erations. We use the 12-site cluster illustrated in Fig. 1(a) with
periodic boundary conditions, and adopt δt = 0.01/t1 and
ML = 15. As the initial state, we assume |ψ (t = 0)〉 = |ψ0〉,
where |ψ0〉 is the ground state of the Hamiltonian without an
external field.

FIG. 2. Calculated time evolution of the spin correlation function
Sz(q, t ) at q = (π, π ) (red line) and at q = (2π/3, 2π/3) (blue line),
where we assume ωp/t1 = 30 with (a) A0 = 1.0, (b) A0 = 2.0, and
(c) A0 = 4.0. Here, the dashed lines indicate S̄z(q) averaged from
ti = 10/t1 to tf = 500/t1. In (d), we show the calculated double
occupancy n̄d averaged from ti = 10/t1 to tf = 500/t1, assuming
A0 = 4.0. The dashed line indicates the value of nd(t = 0).

To determine the type of magnetic orders, we calculate the
spin correlation function with momentum q at time t written
as

Sz(q, t ) = 1

L

∑
i, j

Sz
i j (t )eiq·(ri−r j ), (5)

where Sz
i j (t ) = 〈ψ (t )|Ŝz

i Ŝz
j |ψ (t )〉 is the spin correlation in the

real space. The ordering vector q = QNéel = (π, π ) and q =
Q120◦ = (2π/3, 2π/3) correspond to the Néel order and 120◦
order, respectively. The spin correlation functions calculated
as a function of t2/t1 at U/t1 = 20 are illustrated in Fig. 1(d),
where we clearly find the phase transition from the Néel order
to the 120◦ order at t2/t1 
 0.93. Throughout the main text of
this Letter, we use the values U/t1 = 20 and t2/t1 = 0.95, for
which the ground state is the 120◦ order. Other cases, where
the ground state has the Néel order and the nearest-neighbor
hopping integral satisfies t2/t1 = 1, are also discussed in Sup-
plemental Material [37]. We also define the time average of
the spin correlation function from time t = ti to tf as

S̄z(q) = 1

tf − ti

∫ tf

ti

dtSz(q, t ), (6)

and the difference between the time average and initial value
as �Sz(q) = S̄z(q) − Sz(q, t = 0).

The calculated results for the spin correlation function
Sz(q, t ) as a function of time are shown in Figs. 2(a)–2(c). We
find that, with the irradiation of light with A0 = 1.0 and ωp =
30/t1, the 120◦ order stable in the ground state is switched
to the Néel order [see Fig. 2(a)], which clearly indicates a
magnetic phase transition induced by an external field. How-
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FIG. 3. Differences in the spin correlation function calculated
in the parameter space (ωp/t1, A0). Shown are (a) �Sz(QNéel ),
(b) �Sz(Q120◦ ), and (c) S̄z(QNéel ) − S̄z(Q120◦ ).

ever, when we increase the amplitude of the external field to
A0 = 2.0, the state remains to be of 120◦ order after the light
irradiation [see Fig. 2(a)]. When we continue to increase the
amplitude to A0 = 4.0, the system again shows a transition
to the Néel order [see Fig. 2(c)]. The present results suggest
that the light-induced phase transition may occur in the ATL
Hubbard model by adjusting the intensity of light. We note
that the possibility of transitions to other types of orders is
excluded from the analysis of the real-space spin correlation
functions, as discussed in the Supplemental Material [37].

To explore the parameter regions where the 120◦ order
remains or the Néel order overcomes after the light irradiation,
we calculate the difference in the spin correlation function
�Sz(q) in the parameter space (ωp/t1, A0). The results are
shown in Fig. 3(a) for the Néel order and in Fig. 3(b) for

the 120◦ order. These results clearly indicate that when the
120◦ order is suppressed, the Néel order is complementarily
enhanced. In addition, both orders are strongly suppressed at
ωp/t1 < 25, where we note that the double occupancy defined
as

nd(t ) = 1

L

∑
i

〈ψ (t )|n̂i,↑n̂i,↓|ψ (t )〉 (7)

increases [see Fig. 2(d)] and therefore the charge excitations
occurring across the Mott-Hubbard gap (
U/t1) increase,
leading to the suppression of spin fluctuations. In Fig. 3(c),
we show the calculated result for S̄z(QNéel) − S̄z(Q120◦ ). This
result indicates which order is realized in the parameter space
after the light irradiation; in the red region, the Néel order
appears, while in the blue region, the 120◦ order remains.

To discuss the origin of the light-induced phase transition,
we analyze the model using the Floquet theory [11,12]. Ap-
plying the high-frequency expansion to our Hubbard-model
Hamiltonian with an external field A(t ) = A0 cos ωpt , we ob-
tain the effective Hamiltonian in the strong-coupling limit
as [12]

Ĥeff = Jeff
1

∑
〈i, j〉

Ŝi · Ŝ j + Jeff
2

∑
〈〈i, j〉〉

Ŝi · Ŝ j, (8)

where

Jeff
1 =

∞∑
m=−∞

(−1)m 4t2
1Jm(A0/

√
2)

U + mωp
(9)

and

Jeff
2 =

∞∑
m=−∞

(−1)m 4t2
2Jm(

√
2A0)

U + mωp
(10)

are the NN and NNN Floquet effective exchange interactions,
respectively. Here, Jm(x) is the mth Bessel function. Using
this model, we perform the calculation of the quench dy-
namics [51], where J1 and J2 are suddenly changed to Jeff

1
and Jeff

2 , respectively, at t = 0. The result for the difference
S̄z(QNéel) − S̄z(Q120◦ ) thus calculated is shown in Fig. 4(a) in
the parameter space (ωp/t1, A0), which we find is consistent
with the result obtained for the Hubbard model at least in the
region ωp/t1 � 25 [see Fig. 3(c)]. The inconsistency found
in the region ωp/t1 � 25 comes from the enhancement of the
double occupancy, which cannot be explained by the strong-
coupling expansion. We thus conclude that in a regime of
sufficiently high frequency, the result obtained from the Flo-
quet effective Hamiltonian Eq. (8) well explains the behaviors
of the Hubbard model in the strong-coupling region under a
time-periodic external field.

We also calculate the phase diagram of the effective
Hamiltonian simply from the ratio of the effective exchange
interactions Jeff

2 /Jeff
1 . The result is shown in Fig. 4(b), where

the phase boundary is determined as the line J2/J1 = 0.83, at
which the phase transition between the Néel and 120◦ orders
occurs in the ground state of the ATL Heisenberg model. We
thus find that the Néel order is preferred in the red region
(Jeff

2 /Jeff
1 < 0.83), while the 120◦ order is preferred in the

blue region (Jeff
2 /Jeff

1 > 0.83). We thus clearly find that the
phase diagram obtained by the quench-dynamics calculation
is consistent with the phase diagram determined from the ratio
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FIG. 4. (a) Difference S̄z(QNéel ) − S̄z(Q120◦ ) calculated for the ef-
fective Heisenberg model Eq. (8) in the parameter space (ωp/t1, A0).
(b) Ratio of the Floquet effective exchange interactions, where the
region of Jeff

2 /Jeff
1 < 0.83 (Jeff

2 /Jeff
1 > 0.83) is indicated by the red

(blue) color.

of the exchange interactions, implying that the magnetic order
realized by the light irradiation can be predicted from the
Floquet theory.

We note that there are regions where Jeff
1 < 0 and Jeff

2 < 0,
i.e., the regions where the ground state of the Hamiltonian

Eq. (8) is ferromagnetic. Our calculated results, however, do
not indicate the presence of such regions. This is because the
electric field never flips the spins, or the total spin is conserved
by light irradiation. In addition, since the time evolution of
the sign-reversed Hamiltonian is exactly identical with the
reversed time evolution of the original Hamiltonian [11], we
can discuss the dynamics of an effective Hamiltonian with
Jeff

1 < 0 and Jeff
2 < 0 by using the effective Hamiltonian with

Jeff
1 > 0 and Jeff

2 > 0. We also note that there is a region where
Jeff

1 · Jeff
2 < 0. It is known that the Néel order is preferred in

the case of Jeff
1 > 0 and Jeff

2 < 0 [52], and thus the whole
phase diagram can again be interpreted from the Floquet
theory.

In summary, we have investigated the time dependence
of the spin correlations of an anisotropic triangular Hubbard
model at half filling under a time-periodic external electric
field using the time-dependent Lanczos method. We have
shown that the 120◦ order can be switched to the Néel or-
der by tuning the frequency and amplitude of the external
field. To understand the magnetic phase transition under a
periodic field, we have introduced the effective Heisenberg-
model Hamiltonian by high-frequency expansion. The phase
diagram obtained from the quench dynamics of this effective
model is consistent with the results of our Hubbard-model
calculations, which implies that the phase diagram obtained
by light irradiation can be interpreted by the Floquet theory.
Thus, the switching of magnetic orders can be realized in a
frustrated spin system by tuning the amplitude and frequency
of the external field. We hope that our results will shed some
light on the possible realization of the photocontrol of mag-
netic orders in frustrated spin systems.
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