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Magnetotransport in semiconductors and two-dimensional materials from first principles
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We demonstrate a first-principles method to study magnetotransport in materials by solving the Boltzmann
transport equation (BTE) in the presence of an external magnetic field. Our approach employs ab initio electron-
phonon interactions and takes spin-orbit coupling into account. We apply our method to various semiconductors
(Si and GaAs) and two-dimensional (2D) materials (graphene) as representative case studies. The magnetoresis-
tance, Hall mobility, and Hall factor in Si and GaAs are in very good agreement with experiments. In graphene,
our method predicts a large magnetoresistance, consistent with experiments. Analysis of the steady-state electron
occupations in graphene shows the dominant role of optical phonon scattering and the breaking of the relaxation
time approximation. Our paper provides a detailed understanding of the microscopic mechanisms governing
magnetotransport coefficients, establishing the BTE in a magnetic field as a broadly applicable first-principles
tool to investigate transport in semiconductors and 2D materials.
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I. INTRODUCTION

Magnetic fields can strongly influence the electrical
properties of materials, with changes quantified by magne-
totransport coefficients such as the magnetoresistance (MR),
Hall mobility and Hall factor [1,2]. In metals and semiconduc-
tors, the change in resistivity with magnetic field is typically
small, but in certain semimetals, magnetic heterostructures,
and oxides, the effects can be far greater or even dramatic,
as in the case of giant and colossal MR [3,4]. Magneto-
transport is of practical relevance for various applications,
including sensors [5], magnetoresitive RAM, and hard drives
[6]. In addition, measurements of the carrier concentration
and electrical mobility require knowledge of the Hall factor.
Therefore, it is important to understand the physical mech-
anisms governing magnetotransport and develop methods to
accurately predict the MR and Hall factor.

Experimentally, magnetotransport has been studied exten-
sively in metals [2] and simple semiconductors such as Si
[7–12] and GaAs [13–15]. More recently, measurements on
two-dimensional materials have shown unconventional be-
haviors, such as large nonsaturating MR at high fields in
graphene [16–18] and WTe2 [19], and various studies have
shown an interplay between band-structure topology and mag-
netotransport, including the chiral anomaly and negative MR
in topological semimetals [20–22]. These developments show
that magnetotransport is a rapidly growing research arena.

Early attempts to formulate theories of magnetotransport
phenomena [23] focused on approximate solutions of the
Boltzmann transport equation (BTE) in the relaxation time ap-
proximation (RTA) [1]. Subsequent work using parametrized
electronic band structures and electron-phonon (e-ph) inter-
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actions has shown calculations of the Hall factor in various
materials [24,25]. Approaches beyond the RTA have also been
proposed, for example, by solving BTE in polar semicon-
ductors in terms of infinite determinants [26] or computing
the phonon-limited Hall mobility in Si using deformation
potential theory [27,28]. These models lack analytic closed-
form solutions and thus were implemented numerically,
highlighting the need for computational approaches to study
magnetotransport.

In recent years, density functional theory (DFT) [29] and
density functional perturbation theory (DFPT) [30] have en-
abled ab initio calculations of e-ph interactions. The resulting
phonon-limited charge transport has been studied in vari-
ous semiconductors and 2D materials in the framework of
the BTE [31–39]. First-principles studies of magnetotrans-
port have lagged behind—the only existing examples are two
works by Macheda et al., who investigated an insulator (di-
amond) [40] and, very recently, the Hall factor in graphene
[41] by solving the BTE in a magnetic field, as well as
methods employing the Fermi surface topology to investigate
magnetotransport [42]. However, first-principles calculations
of magnetotransport in semiconductors are still missing and
the MR in 2D materials has not yet been computed.

Here we show calculations of the MR, Hall mobility, and
Hall factor as a function of temperature and magnetic field,
in group-IV and polar semiconductors, focusing on the pro-
totypical cases of Si, GaAs, and in graphene. Our approach,
implemented in our open-source PERTURBO code [43], solves
the linearized BTE in a magnetic field using Jacobi iteration
(as opposed to conjugate gradient implemented in Ref. [40])
to obtain the conductivity tensor and from it the magneto-
transport properties. The calculations employ ab initio e-ph
interactions and include spin-orbit coupling (SOC), which is
particularly important for holes. We evaluate k-space deriva-
tives from a central finite difference approximation [44] and
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obtain the conductivity using tetrahedron integration. To our
knowledge, magnetotransport calculations employing such
precise numerical techniques and correctly including SOC
have not yet been reported. Extensive comparisons with ex-
periments demonstrate the accuracy of our first-principles
magnetotransport calculations for semiconductors. Analysis
of the relative occupation changes in momentum space shows
the dominant role of backscattering due to optical phonons
and the breaking of the RTA in graphene. Taken together, our
work demonstrates an accurate method to investigate magne-
totransport in semiconductors and 2D materials and clarify the
underlying microscopic mechanisms.

II. METHODS

A. Magnetotransport properties and BTE

In the presence of small electric (E) and magnetic (B)
fields, the current density J can be written as

Ji =
3∑

j=1

σi j (B)Ej, (1)

with the conductivity tensor σi j expanded as [1]

σi j (B) = σ
(0)
i j + σ

(1)
i jk Bk + σ

(2)
i jkl BkBl + . . . , (2)

with implied summations over repeated indices (which cor-
respond to Cartesian components). We write the current in
terms of electronic occupations fnk and band velocities vnk (n
is the band index and k the crystal momentum of the electronic
state),

J = −Se

Nk�

∑

nk

fnkvnk, (3)

where e is the absolute value of the electric charge, S the spin
degeneracy, Nk the number of unit cells, and � their volume.
At steady-state, the BTE in the presence of both electric and
magnetic fields reads [1]

e
∂ fnk

∂εnk
vnk · E + e

h̄
(vnk × B) · ∇k fnk + Ie−ph[ fnk] = 0, (4)

where εnk are electronic energies and the last term in-
cludes e-ph collision processes consisting of absorption or
emission of a phonon [43]. Expanding fnk to leading or-
der in E, we write fnk − f 0

nk = − f 0
nk(1 − f 0

nk ) eE
kBT · Fnk and

solve for the unknown occupation changes Fnk [43]. Fac-
toring out −eE f 0

nk(1 − f 0
nk )/kBT , we obtain the linearized

BTE

vnk+ e

h̄
(vnk × B)∇kFnk = 1

Nq

∑

m,νq

W νq
nk,mk+q(Fnk−Fmk+q),

(5)

where ν is the phonon mode index, q the phonon wave vector,
and Nq the number of q points used in the summation. Here,
W νq

nk,mk+q is the scattering rate from |nk〉 to |mk + q〉 and
takes into account both phonon absorption and emission pro-
cesses [43]. We solve for Fnk by rearranging terms in Eq. (5)
and using the iterative Jacobi scheme. For each iteration i,

we get

F(i+1)
nk = vnkτnk + τnk

Nq

∑

m,νq

W νq
nk,mk+qF(i)

mk+q

+ e

h̄
τnk(vnk × B)∇kF(i)

nk, (6)

where τnk is the relaxation time. The term containing the
gradient in k, ∇kFnk, is computed using the central finite
difference approximation in Ref. [44]. Starting with the RTA
solution as the initial guess, Fnk = vnkτnk, we evaluate the
right-hand side of Eq. (6) to update the solution Fnk, iterating
this procedure until convergence.

Expanding fnk in Eq. (3), we obtain [43]

σi j = e2S

Nk�kBT

∑

nk

f 0
nk

(
1 − f 0

nk

)
(vnk )i(Fnk ) j . (7)

We can calculate the magnetotransport coefficients from this
conductivity tensor because of its implicit dependence on B
through Eq. (6). The MR can be obtained from the resistivity
tensor ρ(B) = σ−1(B) using [1]

MR = ρ(B) − ρ(0)

ρ(0)
. (8)

At low fields, the MR is expected to be quadratic in the
magnetic field [45]. In most materials, the MR perpendicular
to B (transverse MR) is small and positive—classically, this
increase in resistivity can be viewed as a result of the Lorentz
force deviating charge carriers from their initial trajectories.

First-principles calculations typically compute the drift
mobility μd in zero magnetic field, whereas in experiments
a common practice is to obtain the mobility from Hall mea-
surements [46]; the resulting Hall mobility is defined as
μH = σdRH, where σd is the drift conductivity and RH the
Hall coefficient. In Drude theory, RH evaluates to 1/ne for
a carrier concentration n [1], so μH = μd. However, when
the dependence of the relaxation time on the electronic state
is taken into account, RH deviates from the Drude value
by the Hall factor r = μH/μd [24], so the Hall and drift
mobilities differ by the Hall factor. For systems with cubic
symmetry and B field in the z direction, the Hall factor is
r = ne σ (1)

xyz/(σ (0)
xx )2 [25].

B. Computational details

We apply our approach to Si, GaAs, and graphene.
Their ground state is computed using DFT in the local
density approximation, with a plane-wave basis set and norm-
conserving pseudopotentials, using the QUANTUM ESPRESSO

package. We use plane-wave kinetic energy cutoffs of 40 Ry
for Si, 72 Ry for GaAs, and 90 Ry for graphene and re-
laxed lattice parameters of 5.43 Å for Si, 5.56 Å for GaAs,
and 2.44 Å for graphene. The phonon dispersions and e-ph
perturbation potentials on coarse q-point grids are computed
with DFPT [51] and the Wannier functions are obtained using
WANNIER90 [52]. We use coarse electron k-point and phonon
q-point grids of 8 × 8 × 8 for Si and GaAs and 36 × 36 × 1 k
and 18 × 18 × 1 q points for graphene. We compute and
interpolate the e-ph matrix elements using our PERTURBO open
source package [43]. Calculations with SOC [43,53] employ
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(a)

(c) (d)

(b)

FIG. 1. (a) Drift and Hall mobilities in blue and red, respectively, as a function of temperature in n-type silicon (experimental data are from
Refs. [12,47–49]). (b) Hall factor at 300 K as a function of carrier concentration in n-type silicon. (c) Transverse MR as a function of magnetic
field in n-type silicon, compared with experiments from Ref. [8]. (d) Drift and Hall mobilities as a function of temperature in p-type silicon
(experimental data are taken from Refs. [9,11,50]).

fully relativistic pseudopotentials. We implement the iterative
solution of the BTE in a magnetic field in PERTURBO, and
use very fine, equal and uniform k- and q-point grids (with
1403 points for Si, 6503 for GaAs and 18002 for graphene)
to converge the BTE solutions. The conductivity tensor is
obtained via tetrahedron integration [43].

III. RESULTS

A. Silicon

We compute the drift and Hall mobilities, Hall factor, and
MR as a function of temperature for Si and compare the com-
puted results with experiments. Figure 1(a) shows the Hall
and drift electron mobilities in n-type silicon. The agreement
with experimental data from Refs. [12,47–49] is excellent.
As expected for electron carriers, the Hall mobility is greater
than the drift mobility at all temperatures. The computed Hall
factor, r = μH/μd, increases slightly with temperature, as
evidenced by higher deviations between μH and μd for higher
temperatures.

The Hall factor for electrons is shown in Fig. 1(b) at 300 K
as a function of carrier concentration, which can be tuned
in our calculations by changing the chemical potential. At
low carrier density, our computed Hall factor is very close
to the accepted value of ∼1.15 in n-type Si [7]. The com-
puted Hall factor is within ∼10% of experiment at all carrier
concentrations, a noteworthy result for a calculation without
adjustable parameters. We attribute the increasing deviation
from experiments at higher concentrations to scattering from
ionized impurities not taken into account in this paper.

The transverse MR is a common figure of merit for various
applications. In Fig. 1(c), we plot the transverse MR as a
function of magnetic field for electron carriers in n-type Si.
The computed MR is in very good agreement with exper-
iments from Ref. [8]. In the low field regime μHB � 1,
the calculations use a strict convergence threshold on the
conductivity, with a change 	σ/σ < 10−8 between consec-
utive iterations. Calculations at higher fields (B > 2 × 103 G)
require relaxing this convergence threshold to ∼10−4. Remain-
ing differences between experiment and theory may be due to
various factors, including uncertainty in the experimental tem-
perature and doping concentration, as well as inevitable small
deviations from experiment of the computed band structure
and phonon dispersions.

Figure 1(d) shows the computed Hall and drift mobili-
ties of hole carriers and compares them with experimental
data for p-type silicon. The hole mobilities are in very good
agreement with data for p-type Si [9,11,50]. For hole car-
riers, correctly, we obtain a behavior opposite to electrons,
μH <μd in the entire temperature range and thus a Hall fac-
tor r <1. Our computed low-field MR coefficient, MR/B2,
is 7.74 × 105 cm4/V2s2 for holes at 300 K, within 30%
of the measured value of 5.90 × 105 cm4/V2s2 [54]. For
hole carriers, we find that calculations without SOC fail
to produce an isotropic conductivity tensor, a key sanity
check for Si (for electrons, SOC has only a minor effect).
The spurious MR anisotropy for calculations without SOC
is due to poor numerical convergence and greater errors in
the conductivity tensor, providing further evidence that in-
cluding SOC in our band structure and e-ph calculations
[43,53] is key to obtaining accurate magnetotransport for hole
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(a)

(b)

FIG. 2. (a) Drift and Hall mobilities in GaAs as a function of
temperature for an electron concentration n = 1016 cm−3. (b) Hall
factor versus temperature for electrons in GaAs.

carriers. These results show that including SOC makes accu-
rate magnetotransport calculations possible for hole carriers
in semiconductors.

B. Gallium arsenide

The drift mobility has been studied extensively from first
principles in GaAs [31,34,37]. Due to its polar character, elec-
trons in GaAs couple strongly with longitudinal optical (LO)
phonons through the Fröhlich interaction. We have recently
shown that the iterative approach (ITA) to solve the BTE over-
estimates the mobility and that including electron-two-phonon
(e-2ph) scattering processes significantly improves the result;
the RTA also gives a mobility in agreement with experiments
[31], but due to compensation of errors [34]. We find that
the same trends also hold for the Hall mobility. Figure 2(a)
shows the drift and Hall mobilities for electrons in GaAs as
a function of temperature. The experimental Hall mobility
shown for comparison is obtained from Ref. [13].

The ITA overestimates both the drift and Hall mobilities,
by a factor of ∼2 at 300 K, while the RTA is in better
agreement with experiments due to error compensation [34].
The Hall factor r = μH/μd for both approaches is correctly
greater than 1, but the Hall factor for ITA is much closer
to the measured data [Fig. 2(b)]. Although each of the Hall
and drift mobilities are overestimated in the ITA, their ratio is
predicted accurately; we cannot establish whether this result
is a coincidence or due to cancellation of effects from e-2ph

(a)

(b)

FIG. 3. (a) Transverse MR in graphene versus magnetic field for
various hole carrier concentrations at 300 K. (b) Comparison of the
calculated MR for a hole concentration of p = 2.46 × 1013 cm−2

with experimental data for p = (2.2 − 4.2) × 1013 cm−2, taken from
Ref. [16].

processes in the ratio. Overall, these trends show that for polar
semiconductors first-principles magnetotransport calculations
have an accuracy similar to calculations without magnetic
field.

C. Graphene

Similar to other semimetals [1], graphene exhibits a rel-
atively large MR, with reported values of 20–50% at room
temperature and even greater at lower temperatures [17]. We
discuss the MR in graphene for hole carriers but the MR
values for electrons are similar. The accuracy of our settings is
checked by calculating the drift mobility at 300 K; we obtain
a value of ∼160 000 cm2/Vs consistent with experiments in
suspended graphene [55].

Figure 3(a) shows the computed MR in graphene at
300 K. We find that the MR depends strongly on carrier
concentration—a doubling of concentration from ∼1.5 to
3 × 1012 cm2/Vs decreases the MR by an order of magnitude.
This situation makes comparison with experiments difficult
[Fig. 3(b)] as the reported carrier concentration usually does
not take into account the Hall factor (we find r = 1.45 for
n = 1.2 × 1012 cm−3, consistent with recent work [41]). As
by definition n = r/(eRH), carrier concentrations from Hall
measurements are inaccurate unless the Hall factor is taken
into account. In addition, most graphene samples are mea-
sured on substrates, often causing a reduction in the mobility.
Accordingly, experimental values of the mobility and MR
vary over a wide range [17,18,56]. This variability in the ex-

L161103-4



MAGNETOTRANSPORT IN SEMICONDUCTORS AND … PHYSICAL REVIEW B 103, L161103 (2021)

FIG. 4. (a) Projection of the occupation changes δ f / f onto the kz = 0 plane in Si. (b) Occupation change δ f / f in graphene near the Dirac
cone with contributions from all phonons. (c) The same result as in (b) for graphene but with scattering from the highest-energy optical phonon
branch excluded from the transport calculation.

perimental results can at least partially explain the discrepancy
between the calculated and measured MR in Fig. 3(b).

Analysis of the electron occupations (see below) reveals
that taking into account backscattering by iteratively solv-
ing the full BTE (as opposed to using the RTA) is essential
in graphene, and that the RTA fails to capture the cor-
rect electronic occupations at steady state. This key role of
backscattering in magnetotransport mimics trends found for
thermal transport in graphene [57].

D. Steady-state occupations

To conclude our analysis, we study the electron occu-
pations at steady state, focusing on their change due to
the magnetic field for a constant electric field. We de-
fine this relative occupation change as δ f / f = [ fnk(E, B) −
fnk(E, 0)]/ fnk(E, 0) and plot it in momentum space for Si
and graphene. In the results for Si, shown in Fig. 4(a), the oc-
cupation change projected on the kz = 0 plane clearly shows
the effect of the Lorentz force, whereby the electrons de-
viate in the E × B direction near the six conduction band
minima (the occupations at the zone center are projections
of the two band minima along the kz axis). As expected,
the electrons are deflected in momentum space due to the
magnetic field, an important sanity check for our numerical
implementation.

The results for graphene, shown in Fig. 4(b), are more
interesting. Similar to Si, the occupations near the Dirac cone
are also changed by the Lorentz force. However, electrons in
graphene couple strongly with LO phonons with momentum
near � and transverse optical (TO) phonons with momentum
near K [58], which mediate intra- and intervalley electronic
processes, respectively. As a result, optical phonon absorption
generates a steplike pattern in the occupation changes, with
160 − 200 meV spacing equal to the LO and TO phonon
energies [58]. The disappearance of the alternating patches on
removing scattering from the highest optical branch from the
transport calculation [Fig. 4(c)] provides concrete evidence
for the dominant optical phonon backscattering in graphene.
The RTA completely misses this trend and gives occupation
changes without a steplike pattern, as shown in Fig. 4(c).
While in graphene the magnetotransport RTA results are in
fairly good agreement with the full solution of the BTE, which
correctly includes backscattering, our results show that the

RTA fails to capture important features of magnetotransport
in graphene.

IV. CONCLUSION

We have shown calculations of magnetotransport that can
accurately predict the Hall mobility, Hall factor, and MR
in Si and GaAs. Our results for graphene leave room for
improvements and call for stricter protocols for magneto-
transport measurements in 2D materials. Analysis of the
steady-state occupations in graphene highlights a key strength
of first-principles calculations—they can capture the competi-
tion between mode-dependent e-ph scattering and the effect of
the Lorentz force in momentum space, shedding light on the
microscopic mechanisms governing magnetotransport. With
calculations on materials with tens of atoms in the unit cell
readily available [43], an extension of these results to other
semiconductors and 2D materials appears straightforward.
The current formalism can be easily extended to include the
Berry curvature, for example, to study magnetotransport in
topological semimetals and shed light on the origin of their
unconventional MR. Our method is general and can be applied
to a wide range of materials, including semimetals such as
bismuth and graphite with large MR and topological semimet-
als with strong SOC and unconventional magnetotransport.
As our approach allows us to calculate the full resistivity
tensor, it will be interesting to apply it in the future to interpret
experimental angular MR diagrams. The magnetotransport
calculations shown in this paper will be made available in
our PERTURBO code, thus greatly expanding the reach of first-
principles transport studies and connecting them more deeply
with transport experiments, which are often carried out in
magnetic fields.
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