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Evidence for deconfined U (1) gauge theory at the transition between toric code and double semion
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Building on quantum Monte Carlo simulations, we study the phase diagram of a one-parameter Hamiltonian
interpolating between trivial and topological Ising paramagnets in two dimensions, which are dual to the
toric code and the double semion. We discover an intermediate phase with stripe order which spontaneously
breaks the protecting Ising symmetry. Remarkably, we find evidence that this intervening phase is gapless due
to the incommensurability of the stripe pattern and that it is dual to a U (1) gauge theory exhibiting Cantor
deconfinement.
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Introduction. At first sight, nontrivial bosonic symmetry-
protected topological (SPT) phases [1–7] look very similar to
their trivial counterparts since they share the same symme-
tries, behave in the same way in the bulk, and do not possess a
local order parameter. Several tools were proposed to unveil
the differences between these phases, like comparing their
edge properties or looking at their entanglement spectrum or
their many-body wave function directly [1–12]. Another way
is to gauge the protecting symmetry, since each SPT class
is dual to a different Dijkgraaf-Witten gauge theory [1–3,
13–15]. As a result, if one attempts to interpolate from one
class to the other, something drastic must happen on the way:
either a quantum phase transition or an intermediate phase of
matter which breaks spontaneously the protecting symmetry.

Exploring quantum phase transitions featuring SPTs is
therefore a good place to look for exotic quantum criticality.
In fact, transitions between different SPT phases [16–29],
and transitions between SPTs and symmetry-broken states
[30–40], have both attracted tremendous attention. Most of
the existing work on transitions between SPTs has focused on
continuous symmetries with “large” symmetry groups such
as O(N ), and relations with deconfined quantum criticality
have been established in that context [21–23,25,26,29,41–43].
On the other hand, the study of microscopic models with
discrete symmetries has mostly been limited to one dimension
(1D) [24,37].

In this Letter, we investigate the quantum phase diagram
of a one-parameter Hamiltonian interpolating between trivial
and topological Ising (Z2) paramagnets in 2D, which are
dual [14] to the toric code (TC) [44] and the double semion
(DS) [45–48], respectively. Unlike many other transitions be-
tween topological phases, this transition cannot be described
in terms of anyon condensation [49], and one has to resort
to numerical studies [18,50–52]. Although the double semion
model itself has a sign problem that was proven to be ir-
remediable [53,54], we have developed a sign-problem-free

quantum Monte Carlo algorithm [55] which takes advantage
of its SPT formulation. This allows us to access system sizes
an order of magnitude larger than previous work, which re-
lied on exact diagonalization [18]. We find evidence for an
intermediate incommensurate stripe phase which is dual to
a deconfined U (1) gauge theory and which therefore evades
Polyakov’s result on the confinement of compact U (1) gauges
theories in (2 + 1)D [56]. This is one of the first observations
of “Cantor deconfinement” in a microscopic system [57–61].

Model. A conventional Z2 paramagnet is described by the
simple Hamiltonian, Htr = −∑

j σ
x
j , where σ

x,y,z
j are Pauli

matrices that live on the sites j of the triangular lattice [62].
It has a single gapped ground state |ψtr〉, which is an equal
superposition of all σ z configurations. Since domain walls
of Ising spins on the triangular lattice form closed noninter-
secting domain walls on the dual honeycomb lattice, we can
equally think of |ψtr〉 as an equal superposition of all domain
wall configurations, see Fig. 1, which we denote symbolically
as |ψtr〉 = ∑

dw |dw〉 [63].
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FIG. 1. (a) Phase diagram of the model (1) with intermediate
stripe phase centered around α = 1/2. Domain walls, which separate
up and down regions of σ z, are represented for typical configurations,
in the case of (b) the trivial paramagnetic phase (PM), (c) the stripe
ordered phase, and (d) the topological paramagnetic phase (SPT).
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FIG. 2. (a) Stripe structure revealed by 〈σ z
r σ z

0 〉 at α = 1/2 for a
periodic system of size N = 10 × 10. (b) Sketch of a spin configu-
ration displaying two noncontractible oriented domain walls (orange
lines). The black arrows are oriented unit length vectors dr̃ orthogo-
nal to the domain wall edges r̃. (c) Square of the order parameter D2

defined in Eq. (2) versus α for increasing system sizes. The data is
symmetric around α = 1/2 for α > 1/2.

In 2D, there exists a second type of Z2 paramagnet, which
is fundamentally different from the trivial one as long as the
Z2 symmetry is preserved [1–3,14]. A parent Hamiltonian for
this topological phase is given by Htop = U†HtrivU , where
U = (−1)Ndw is a unitary operator giving the parity of the
number of domain walls Ndw, see the Supplemental Material
(SM) for an explicit form of Htop [62]. This Hamiltonian also
has a single gapped ground state which is a superposition
of all domain wall configurations. The only difference with
the trivial paramagnet is that each domain wall comes with
a −1 fugacity, i.e., |ψtop〉 = ∑

dw(−1)Ndw |dw〉. In this work,
we interpolate between the two phases with the following
one-parameter Hamiltonian,

H = (1 − α)Htr + αHtop, α ∈ [0, 1]. (1)

Intermediate stripe order. We investigate the model (1) by
means of quantum Monte Carlo simulations [55,62]. Since
U = U†, the phase diagram is symmetric around α = 1/2,
see Fig. 1(a). It is therefore natural to start the analysis at
α = 1/2, where the real-space two-point correlation 〈σ z

r σ z
0 〉

reveals a stripe structure, as shown in Fig. 2(a) for a prototyp-
ical N = 10 × 10 system size.

We observe that the stripe pattern has a period given by
|Q| � 2π/5, where Q is the stripe wave vector (we take the
lattice spacing equal to unity). However, the orientation of Q
(given by the polar angle ϕ) and the precise value of the pe-
riod vary depending on the finite-size system geometry [62].
Depending on the system size, the stripe orientation belongs
to one of two sets, which we call “vertical,” with ϕ = Z2π/6,
and “horizontal,” with ϕ = (Z + 1

2 )2π/6. Remarkably, these
two sets of orientations are not related by symmetry, which is
a good indication that the stripe order is only weakly pinned
by the lattice. However, this makes a finite-size analysis based
on peaks of the structure factor hazardous.

Instead, we define an order parameter which takes ad-
vantage of the domain wall representation. Whereas a
paramagnetic phase has domain walls of all shapes and sizes,
a perfect stripe phase only has noncontractible domain walls
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FIG. 3. (a) The domain walls, once oriented, become electric
field lines in the gauge description. The orange arrows indicate the
direction of the electric field. The surgery process of going from
(b) to (d) merges two noncontractible domain walls into one con-
tractible one and only becomes possible away from α = 1/2 (due to
periodic boundary conditions, the top and bottom of each drawing
should be identified). This process creates an electric dipole with
charges q = ±2.

(NCDW) wrapping around the same handle of the torus, see
Figs. 1(b)–1(d). Let us define an order parameter D that is
proportional to the number of noncontractible domain walls
NNCDW. In order to do this, it is useful to define an integer-
valued height field h living on the direct lattice which jumps
by one unit every time a domain wall is crossed and whose
winding number around a given handle of the torus will give
NNCDW. First, we give the same (arbitrary) orientation to each
NCDW: For example, for vertical stripes, we choose an “up-
wards” orientation for each of them, see Figs. 2(b) and 3(a)
[62]. This turns each domain wall strand into a vector which
we call Er̃ in anticipation of a gauge interpretation given later
(r̃ is an edge of the dual lattice). We can then define the vector
field giving the gradient of h: ∇h ≡ dr̃ = Er̃ × z, where z is
the unit vector perpendicular to the plane.

A macroscopic number of NCDWs translates into a macro-
scopic tilt for the height field along the direction perpendicular
to the domain walls. The squared norm of the tilt, defined as

D2 =
〈

1

N

∑
r̃
d r̃

〉2

, (2)

can thus be used as (the square of) our order parameter [64].
For a perfectly ordered stripe phase, there is a simple relation
with the stripe wave vector: D2 = (3/2π )2Q2. As shown in
Fig. 2(c) at α = 1/2, it takes a finite value D2 � 0.3 almost
independently of the system size. Away from that point, our
simulations do not allow us to draw a definite conclusion but
from general arguments developed in the following, we expect
a finite intermediate ordered phase centered around α = 1/2,
albeit very small [62]. In fact, the extrapolation of the data
as N → +∞ is consistent with a jump of D2 around αc ≈
0.48–0.49, suggestive of a first order transition between the
stripe phase and the paramagnetic phase (and symmetrically
at αc ≈ 0.51–0.52 for the topological side).

Field theory. Following previous works on stripe mag-
netism [65] and quantum dimer models [58,66–70], we posit
that the coarse-grained height field gives the phase of the
local magnetization, mz(r) = |mz| cos(πh(r)), and that it is
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described by the Lagrangian,

L = 1

2
(∂τ h)2 + V [h] + λ cos(2πh),

V [h] = ρ2

2
(∇h)2 + ρ4

2
(∇2h)2 + g4

2
(∇h)4 + L6, (3)

where we have kept implicit the term which accounts for
vortices of h. The stripe phase occurs for ρ2 < 0, for which
minimizing V [h] leads to a tilt of the height field: h(r, τ ) =
π−1Q · r + δh(r, τ ), where δh are the fluctuations around the
perfectly tilted configuration. The orientation of Q is deter-
mined by the lowest order terms allowed on a triangular
lattice: L6 = −g6|∇h|6 cos(6ϕ) − g12|∇h|12 cos(12ϕ), where
ϕ is the polar angle of ∇h. Since we find both “vertical” and
“horizontal” stripes for finite-size systems, we can conclude
that g6 is subdominant compared to g12, leading to two differ-
ent sets of six minima with almost degenerate values of V [h].

Two different scenarios are possible in order to melt the
stripe order. The first one is to tune ρ2 to zero, which con-
tinuously tunes Q → 0 until the multicritical Lifshitz (also
known as Rokhsar-Kivelson) point ρ2 = 0 [58,66–72]. The
second one is to fix ρ2 but to increase the vortex fugacity,
whose proliferation should mark the phase transition to a
paramagnetic phase. We propose that this second scenario is
the one at play at αc.

Neglecting λ for now, a long wavelength expansion around
one of the minima of V [h] leads to the following Goldstone
theory,

L = 1

2
(∂τ δh)2 + v2

L

2
(∂Lδh)2 + v2

T

2
(∂Tδh)2, (4)

where L and T stand for the direction longitudinal and trans-
verse to Q, respectively [73]. The corresponding emergent
continuous U (1) symmetry is given by h → h + c with c ∈ R
and describes the longitudinal translation of the stripe pattern
with respect to the lattice.

We note that Eq. (3) is dual to a compact U (1) gauge theory
for an electric field given by E = z × ∇h [58,66–69,74,75].
Due to ρ2 being negative, this theory has an unconventional
“Mexican hat” electric energy density which goes like −E2 +
E4. This favors a finite density of electric field lines in the
ground state, which correspond to the noncontractible domain
walls of the stripe phase, see Fig. 3(a).

An expansion around this configuration leads to the photon
of Eq. (4). A vertex operator of the type ei2π ph maps to a
monopole of charge p, and a vortex for h of vorticity q maps
to a charge-q electric charge [69]. We also provide in the
SM a more microscopic justification for a U (1) gauge theory
description of the stripe phase [62].

We now turn our attention to λ, following Ref. [58]. This
term imposes discrete values for the height field and cor-
responds to the addition of p = 1 monopoles in the gauge
theory. When Q is incommensurate, λ is irrelevant, and the
gapless mode of Eq. (4) survives. This gapless regime is
therefore dual to a deconfined U (1) gauge theory, in which
test charges experience logarithmic interactions. By contrast,
when Q is commensurate, λ is relevant and gaps out the
photon, leading to a confined phase. As we will now show, we
find good numerical evidence for a gapless Goldstone boson
described by Eq. (4), and we thus surmise that λ is irrelevant,
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FIG. 4. Dab(q) at α = 1/2 for various system sizes (Lx ×
Ly) leading to vertical (orange) and horizontal (violet) stripes.
(a) Longitudinal correlation DLL(qL, qT = 0) ∝ |qL| for qL → 0 and
(b) transverse correlation DTT(qL = 0, qT) ∝ |qT| for qT → 0, in
good agreement with Eq. (6). (c) Same data as (b) for the smallest
qT value for each system size, highlighting agreement with the linear
prediction.

or very weakly relevant [76], leading to a deconfined U (1)
gauge theory.

We probe the Goldstone boson by computing numerically
the following two-point function:

Dab(q) =
∑

r̃

e−iq·r̃(〈da
r̃ db

0̃

〉 − 〈
da

r̃

〉〈
db

0̃

〉)
, (5)

which is displayed in Fig. 4 at α = 1/2, see also SM [62].
Identifying dr̃ with the height gradient ∇h, one can derive
from Eq. (4) the following prediction [62]:

Dab
(
q
) = qaqb

2
√

(vLqL)2 + (vTqT)2
. (6)

Note that, in the gauge picture, this is nothing but an electric
field correlator [77]. The linear behavior Daa(qa, qb = 0) ∼
qa/2va for qa → 0 is observed in Fig. 4, and we estimate
the velocities to be vL � 1.2 and vT � 0.3. Based on this,
we extract the following field theory parameters (3): g6 � 0,
g12 � 6.5, ρ2 � −0.72, and g4 � 2.25 [62].

Melting the stripe order. Now that we have a good picture of
the stripe order at α = 1/2, we can ask how this order gives
way to a trivial (respectively topological) paramagnet, when
the parameter δα ≡ 1/2 − α is tuned to positive (respectively
negative) values. Terms proportional to δα are the only ones
allowing spin flips that change the number of domain walls by
±1 [62]. Therefore, at δα = 0, the number of noncontractible
domain walls is almost [78] conserved (see numerical evi-
dence in the SM [62]), and the physics is simply described
by their vibrations with Eq. (4).

By contrast, for δα = 0, it becomes possible to create
contractible domain walls, either from the vacuum or by
doing surgery on two noncontractible domain walls, see
Figs. 3(b)–3(d). As |δα| is increased, these contractible do-
main walls will proliferate, eventually leading to a condensate
of domain walls of all shapes and sizes, i.e., a paramagnetic
phase. The negative sign of δα on the topological side ensures
that each contractible domain wall occurs with the appropriate
−1 factor.

L140412-3



DUPONT, GAZIT, AND SCAFFIDI PHYSICAL REVIEW B 103, L140412 (2021)

As seen in Fig. 3(d) (see also SM [62]), in the gauge
picture, a contractible domain wall can be described as a ±2
electric dipole created to screen the background electric field
[79]. This means that δα controls the fugacity of ±2 electric
dipoles and the transition to the paramagnetic phases occurs
when these charges condense, giving rise to a “Higgs” phase.
Since the condensation of charge q particles in a U (1) gauge
theory leads to a Zq gauge theory [80–83], we recover that
the paramagnetic phases are dual to Z2 gauge theories, as
expected. The condensation of charge-2 matter in a (2 + 1)D
compact U (1) gauge theory was studied before in the case
of ρ2 > 0, in which case the U (1) gauge theory is confined
due to monopoles [67,80,84–86]. However, to the best of our
knowledge, the nature of this transition in the case of ρ2 < 0
has not been considered before and is left for future work.

Note that q = ±2 are the smallest dynamical charges
allowed by the Hamiltonian since q = ±1 charges would
require a dangling domain wall configuration (called π -flux
excitation), which are only allowed as static excitations in the
TC/DS models. In fact, the q = ±1 charge survives as one of
the gapped quasiparticles of the Higgs phases: It becomes the
bosonic e excitation of TC and one of the semions of DS [14].

The other excitation to survive in the Higgs phases is the
p = 1/2 monopole, which is dual to cos(πh) in the height
language and is created by σ z

j in the original microscopic
model. The fact that such a fractional monopole is allowed
can be traced back to the nontrivial mapping between Ising
spins and domain walls: Translating all domain walls by one
inter-domain-wall separation is a good symmetry for the do-
main walls (h → h + 1) but not for the spins (since up and
down regions are interchanged in the process). The p = 1/2
monopole is denoted m and is bosonic in both toric code and
double semion [14].

Discussion. Naively, one might have expected an interme-
diate phase which breaks a discrete symmetry to be gapped
and dual to a confined theory. This would have been the case
for a ferromagnetic phase for example, for which confinement
is a natural consequence of the fact that only short domain
walls exist. We have found instead a phase which breaks
the Ising symmetry but that has nevertheless long, fluctuating
domain walls which allow for a dual deconfined theory.

Finally, our sign-problem-free Monte Carlo algorithm en-
ables us to add a variety of other terms in the Hamiltonian
and to study other classes of SPT protected by discrete
symmetries [55]. This could enable us to tune ρ2 towards
the quantum Lifshitz point and to study the “Devil’s stair-
case” of commensurate-incommensurate transitions predicted
to happen on the way [58,59]. Another potentially nearby
multicritical point could be QED3 with Nf = 2 [87,88], which
was predicted to describe the transition between toric code and
double semion in the presence of SU(2) symmetry [89]. The
closely related deconfined quantum critical point of the J-Q
model [90] was in fact recently shown to appear at the tip of a
helical valence bond phase which resembles the stripe phase
presented in this work [61].
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