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We consider the Ising chain driven by oscillatory transverse magnetic fields. For certain parameter regimes,
we reveal a hidden integrable structure in the problem, which allows access to the exact time evolution in this
driven quantum system. We compute time-evolved one- and two-point functions following a quench that activates
the driving. It is shown that this model does not heat up to infinite temperature, despite the absence of energy
conservation, and we further discuss the generalization to a family of driven Hamiltonians that do not appear
to suffer heating to infinite temperature, despite the absence of integrability and disorder. The particular model
studied in detail also presents a route for realizing exotic physics (in this case, signatures of the E8 structure
associated with perturbing a critical quantum Ising chain with a small longitudinal magnetic field) by suitably
tuning the driving frequency. In particular, we numerically confirm that the ratio of the masses of the two lowest
meson excitations is given by the golden ratio.
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Introduction. Over the last decade, the nonequilibrium
dynamics of quantum systems has attracted a great deal of
attention [1–12], motivated by the desire to address funda-
mental questions: When and how do quantum systems relax to
equilibrium? How does one describe this equilibrium? What
influences the dynamics and equilibration? Understanding
these issues is important when developing descriptions of a
growing number of experiments that examine nonequilibrium
dynamics, both in cold atomic gases [13,14] and in the solid
state [15,16]. The insights gained may play an important role
in the development of quantum computing resources, espe-
cially when considering how to protect quantum information
from the scrambling associated with thermalization.

Recently, attention has turned to understanding driven
quantum systems, partially due to the realization that such
systems can host interesting topological phases (see, e.g.,
Refs. [17–23]) and other exotic behavior (such as time crystal
phases [24–30]). These studies have generated much discus-
sion of how to extend and apply the concepts of equilibrium
statistical mechanics in the presence of driving. A particu-
lar issue is that, generically, driven quantum systems do not
conserve energy. As a result, in the long-time limit entropy
maximization leads them to heat up to infinite temperature,
leading to trivial ergodic behavior. As a result, quantum in-
formation is completely scrambled [31–33]. Routes to avoid
this behavior include introducing disorder to induce a many
body localization transition (see, e.g., Refs. [24,34–36]), or to
consider models that are, in some sense, integrable [37].
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In this Letter, we consider a driven model that, at each
point in time, is nonintegrable but nonetheless possesses the
dynamics which is governed by a hidden integrability. Using
this, we compute the nonequilibrium dynamics of equal-time
correlation functions following a quench in which the driving
is initiated. The method for attacking this problem can be
generalized to a (infinite) family of Hamiltonians, opening
the door for future nonperturbative, exact studies. We will
see that this whole family of driven quantum systems, each of
which is generically nonintegrable, does not undergo heating
to infinite temperature. We will also see that breaking the spe-
cial structure of this family leads to thermalization to infinite
temperature.

The driven Ising chain. We consider a one-dimensional
spin- 1

2 Ising magnet, driven by oscillatory transverse fields.
The Hamiltonian reads

H (t ) = −J
L∑

l=1

σ z
l σ z

l+1 + hz
L∑

l=1

σ z
l

− g
L∑

l=1

(e−i�tσ+
l + ei�tσ−

l ), (1)

with J > 0 being the Ising exchange parameter, hz a static
longitudinal field, g the strength of the transverse fields, which
oscillate at frequency �, and L the system size. The spin op-
erators σα

l act at the lth site of the lattice, σ±
l = (σ x

l ± iσ y
l )/2,

and we impose periodic boundary conditions σα
L+1 = σα

1 . The
Hamiltonian (1) is periodic in time H (t ) = H (t + T ) with
period T = 2π/� and could be realized in the quasi-one-
dimensional (quasi-1D) ferromagnet CoNb2O6 [38,39] by
application of oscillating transverse fields.

At a generic time, the Hamiltonian consists of an Ising
interaction term and fields in all (x, y, z) directions. Thus,
instantaneously, the Hamiltonian H (t ) is nonintegrable, and
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the exact computation of quantities seems unlikely. In the fol-
lowing we will see that this is in fact not the case—there exists
a hidden integrable line within this model where exact results
can be obtained. Furthermore, away from this integrability we
will draw general insights.

Time evolution of observables. We will now consider how
a state |�0〉 evolves under the Hamiltonian (1) at times t > 0.
The time-evolved state |�(t )〉 will be a solution of the time-
dependent Schrödinger equation

[ih̄∂t − H (t )]|�(t )〉 = 0, (2)

subject to the initial condition |�(t = 0)〉 = |�0〉. Herein we
set h̄ = 1, which defines our units. The formal solution of
Eq. (2) is well known:

|�(t )〉 = T exp

(
−i

∫ t

0
dt ′ H (t ′)

)
|�0〉, (3)

however, using this to compute time-evolution is a chal-
lenge due to the explicit time-ordering (T) of the exponential.
To make some headway on this problem we apply a time-
dependent unitary transformation U (t ),1 multiplying both
sides of Eq. (2) from the left by U (t ) and inserting a factor of
1 = U (t )†U (t ) between the wave function and the operators:

U (t )[i∂t − H (t )]U †(t )U (t )|�(t )〉 = 0. (4)

The problem can become much simpler if there is a choice of
U (t ) such that this reduces to an effective time-independent
Schrödinger equation. Choosing [43]

U (t ) = exp

(
i�t

2

∑
l

σ z
l

)
≡ e

i�t
2 σ z

tot , (5)

we map Eq. (2) to a time-independent Schrödinger equation
(i∂t − Hst )|�(t )〉 = 0 with an effective static Hamiltonian

Hst =
L∑

l=1

[
−Jσ z

l σ z
l+1 +

(
hz − �

2

)
σ z

l − gσ x
l

]
. (6)

The wave function transforms as |�(t )〉 = U (t )|�(t )〉. This
reduction to a static problem is not evident in the Magnus
expansion [53].

Diagonalizing (6) to obtain eigenstates |En〉 with energies
En, the time-evolved state can be written as

|�(t )〉 =
∑

n

exp

[
−i

(
En + �

2
σ z

tot

)
t

]
|En〉〈En|�0〉 . (7)

The states |En〉 are not eigenstates of σ z
tot and thus each term in

Eq. (7) undergoes nontrivial dynamics. While Eq. (7) is highly
nontrivial, there is no need to despair. Our problem reduces to
a tractable one if we focus on equal-time correlation functions,
as one can use that the operator U (t ) acts in a simple manner
on the spin operators:

U (t )σ x,y
l U (t )† = cos(�t )σ x,y

l ∓ sin(�t )σ y,x
l ,

U (t )σ z
l U (t )† = σ z

l . (8)

1As discussed in Refs. [40–42], there is a nice geometric inter-
pretation of unitary transformations that depends on a continuous
parameter (e.g., time t) in terms of gauge potentials.

Mapping to a “sudden quench.” Let us now consider the
time evolution of one-point functions sα (t ) = 〈�(t )|σα

l |�(t )〉,
where the result is independent of l by translational invari-
ance. Using Eq. (8) these become

sz(t ) = sz
st(t ),

sx(t ) = cos (�t )sx
st(t ) − sin (�t )sy

st(t ),

sy(t ) = cos (�t )sy
st(t ) + sin (�t )sx

st(t ).

(9)

Here each time-dependent expectation value on the right-hand
side describes time-evolution induced by a sudden quench
to the static Hamiltonian (6) when starting from the initial
state |�0〉:

sα
st(t ) =

∑
n,m

ei(En−Em )t 〈�0|En〉〈En|σα
l |Em〉〈Em|�0〉. (10)

Equations similar to Eq. (9) can be written for the two-
point functions, sαβ (
; t ) = 〈�(t )|σα

j σ
β

j+
|�(t )〉. These are
tractable but a little unwieldy and so are given in the
Supplemental Material [53]. All time-evolved correlation
functions are reduced to oscillatory factors multiplying “sud-
den quench” correlation functions. Thus, for this driven
problem, we can apply the techniques developed for sud-
den quantum quenches to compute the time-evolution of
observables.

Having reduced the problem from one with driving to an
effective sudden quench, let us return to the static Hamiltonian
(6). This describes a quantum Ising chain with both transverse
g and longitudinal h = hz − �/2 fields. The two fields can be
independently controlled via the amplitude g and frequency
� of the driving, see Eq. (1). Two interesting cases are im-
mediately apparent. First, if the frequency of the driving is
tuned to a � = 2hz, the longitudinal field is removed from
the static Hamiltonian, which then describes the integrable
quantum Ising chain [54]. Second, one can consider tuning
both the amplitude and the frequency such that g = J and
|hz − �/2| � g, where one realizes a lattice limit of the exotic
critical Ising field theory perturbed by the spin operator [55]
(which has recently received renewed attention thanks to its
nonthermal properties [56–61], despite an absence of integra-
bility). In this work, we focus on the first scenario and describe
the full time evolution of one- and two-point functions
in this driven problem. We touch upon the second case toward
the end.

When � = 2hz, the static Hamiltonian reads

H0
st = −J

L∑
l=1

σ z
l σ z

l+1 − g
L∑

l=1

σ x
l . (11)

This is the quantum Ising chain, which can be mapped to
free fermions and so is exactly solvable [54]. This reveals
that, along the line � = 2hz, there is a hidden integrability in
the problem [despite, instantaneously, the Hamiltonian H (t )
being nonintegrable]. Sudden quenches in the transverse field
Ising model have been extensively studied, with many exact
results being known; see in particular the works of Calabrese,
Essler, and Fagotti [62–64]. We will exploit some of these
results, alongside some new ones, to analytically compute the
dynamics of observables starting from an initial state |�0〉 that
is then time evolved with the driven Hamiltonian (1). The
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FIG. 1. (a) Time-evolution of one-point functions starting from
the ground state of the quantum Ising chain, H (t = 0) with J = 1,
hz = 0, g = 2 and time-evolved with the driven Hamiltonian H (t )
(1) with J = 1, � = 1, hz = 0.5, g = 1.5 for a system with L = 16
sites. The behavior remains the same for bigger system sizes and
larger times. Lines represent analytical results, while points show
numerically exact time-evolution. (b) Time evolution of the two-
point function szz(1, t ) of two adjacent sites for the same quench, for
different system sizes L. We see that szz(1, t ) converges to a nonzero
value. The revival of the fluctuations is a finite-size effect, as can be
seen by increasing the system size.

derivation of these results is rather technical, so we provide
the details in the Supplemental Material [53].

Time evolution in the driven model. Let us now present the
time evolution of correlation functions in the driven model
(1) governed by the effective static Hamiltonian (11). We
compare our analytical results to numerical results obtained
on small finite lattices (our numerical algorithm is explained
in the Supplemental Material. [53]).

In Fig. 1 we present the results for one- and two-point
functions for a particular quench. We see that the one-point
functions synchronize to the driving frequency � and no
heating to infinite temperature occurs, not even if we restrict
the study of the system to stroboscopic times. For the two-
point functions, we see that szz(1, t ) converges to a nonzero

stationary value, confirming the absence of infinite heating.
Although not included in the figure, we mention that the
remaining two-point functions synchronize to the period �

like the one-point functions, except for syz(1, t ) and sxz(1, t )
that converge to zero.

A particularly simple and solvable in closed form scenario
is realized when Hst coincides with the initial Hamiltonian
H (t < 0). In this case the “sudden quench” correlation func-
tions in expressions such as Eq. (9) reduce to equilibrium
correlation functions, known since the seminal works of
Barouch et al. [65] and Barouch and McCoy [66,67] in the
1970s. Detailed results in this case are presented in the Sup-
plemental Material [53] and are, to our knowledge, some
of the few closed form exact results known for correlation
functions in models with driving.

Absence of heating to infinite temperature. With observ-
ables mapping in a simple manner to those from a sudden
quench, it is expected that the system cannot undergo heating
to infinite temperature, as is usually assumed to occur in
driven systems [31–33]. This is easily seen for observables
that feature only σ z

l operators, which map exactly to “sudden
quench” observables [see, e.g., the first line of Eq. (9)]. The
long-time limit of observables after a sudden quench will
be described via the relevant statistical ensemble; for the
case detailed above this is the generalized Gibbs ensemble
[12,68,69]. Generically, when Hst is nonintegrable, this will
be a finite-temperature Gibbs ensemble [70]. We conjecture
that the absence of heating to infinite temperature is not a
result of integrability but instead is due to the structure of the
driving term. In Fig. S1 of the Supplemental Material [53],
we show an explicit example of a nonintegrable system with
absence of heating to infinite temperature by working outside
the integrable line � = 2hz.

We can then ask, what happens if this structure is broken
such that we do not map to an effective sudden-quench prob-
lem? We then expect that, in the long-time limit, the system
thermalizes to infinite temperature, due to the absence of both
energy conservation and the mapping to a sudden quench
problem, combined with entropy maximization. We can ex-
amine this numerically by adding terms to our Hamiltonian
(1), for example:

HX (t ) = H (t ) + JX

L∑
l=1

σ x
l σ x

l+1. (12)

The added term breaks σ z conservation, and thus evolves
nontrivially under the transformation U (t ). This breaks the
mapping to a static Hamiltonian, and hence we expect heating
to infinite temperature. It is worth noting that the thermaliza-
tion timescale in Floquet systems can be very large, see, e.g.,
Refs. [71–74]. [The Floquet model studied in Ref. [74] bears
some similarity to Eq. (12).]

In Fig. 2 we present the time-evolution of one-point func-
tions in the driven model (12). With the addition of the JX

term, we see that the system evolves towards a state with
limt→∞〈σα

j (t )〉 = 0, corresponding to infinite temperature, at
least at the level of one-point subsystems.

Realizing a perturbed critical model. Let us finish with an
illustration of the second interesting case discussed above. We
consider tuning the driving such that the static Hamiltonian
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FIG. 2. Numerically exact time evolution of one-point functions
with the driven Hamiltonian HX (t ), Eq. (12). This shows that, at the
level of one-point functions, breaking the structure of the drive leads
to thermalization to infinite temperature, as all the expectation values
converge to zero. The parameters considered were those of Fig. (1)
with Jx = 0.5, and a Chebyshev expansion of order 64 with a time
step �t = 0.001 (see the Supplemental Material [53] for the details
of the numerical algorithm employed).

describes the perturbed critical Ising chain:

H1
st = −J

L∑
l=1

σ z
l σ z

l+1 − J
L∑

l=1

σ x
l + h

L∑
l=1

σ z
l . (13)

When h = 0, H1
st realizes the critical point of the Ising chain.

For h 
= 0, H1
st is no longer integrable, but its low-energy

physics is well understood thanks to Zamolodchikov [55].
Pairs of fermions (corresponding to domain walls in the or-
dered phase) are confined by the presence of the longitudinal
field h and form “meson” excitations. In the scaling limit, the
algebraic structure of the theory allows the prediction of these
meson masses, including the beautiful result that the ratio of
masses of the first and second meson states realizes the golden
ratio, m2/m1 = ϕ. With integrability absent, we are limit to
performing small system numerics, such as in Fig. 3.

In Fig. 3 we plot the dynamical correlation function

sxx(k = 0, ω1, ω2) =
∑




∫
dt1dt2ei(ω1t1+ω2t2 )

×〈�0|σ x
j+
(t1)σ x

j (t2)|�0〉, (14)

where σ x
n (t ) denotes the time evolution of σ x

n in the Heisen-
berg picture and, for simplicity, we assume the initial state of
the system was prepared to be the ground state of the static
Hamiltonian (13). Note that, because of the driving, energy
is not conserved, and 〈�0|σ x

j+
(t1)σ x
j (t2)|�0〉 is no longer a

function of the time difference (t1 − t2), so we considered the
Fourier transform of both times.

Note that there are four dominant peaks in Fig. 3, these
correspond to the driving frequency � and are located at
(ω1, ω2) = (±�,±�), (∓�,±�). The remaining dominant
peaks (marked p1, p2, and p3 in the figure) correspond to
the first excitations or masses of the static system, and their

FIG. 3. Dynamical correlation function sxx (k = 0, ω1, ω2) (14)
for the perturbed critical model with J = g = 1, � = 1, hz = �/2 +
0.1, and L = 16. The data were normalized so that the maximum
value of the plot is one. The four dominant peaks at (±�, ±�)
and (∓�, ±�) come from the driving frequency �, while the next
three at pi = (mi − �, � − mi ) come from the masses of the mesons
excitations mi. Although m2/m1 is not equal to the golden ratio ϕ, we
verify in the inset that, as the size of the system is increased, m2/m1

gets closer to ϕ.

coordinates are pi = (mi − �,� − mi ), where mi denotes the
masses of the meson excitations. Although these masses do
not satisfy the equality m2/m1 = ϕ, we verify that this is a
finite-size effect in the inset of the figure, as m2/m1 gets closer
to ϕ when the size of the system is increased.

Our results reiterate the fact that driven systems, such as
(1), can be used to realize exotic physics that is far from
accessible with equilibrium probes in its undriven state. This
complements existing studies of such systems where ex-
otic physics may instead be accessed via sudden quantum
quenches [56–61].

Discussion. In this Letter, we have explored an example
of a driven system that is instantaneously nonintegrable but
can nonetheless be solved exactly. This is due to a hid-
den integrability in the problem that is not apparent from
the time-dependent Schrödinger equation: the instantaneous
Hamiltonian H (t ) is nonintegrable, but dynamics of ob-
servables are nonetheless controlled by an effective static,
integrable Hamiltonian. This may provide a route to pro-
tecting quantum information from the scrambling associated
with thermalization through the addition of driving; this is an
interesting direction for future studies.

The methods applied within this Letter can be used to
tackle the dynamics of an infinite family of Hamiltonians
(not necessarily integrable). Based on our results, we con-
jecture that this family of driven systems does not undergo
heating to infinite temperature, even though they are lacking
disorder and (generically) integrability. For example, consider
the Hamiltonian H̃ of any spin- 1

2 chain that conserves total
σ z

tot magnetization (this need not be translationally invariant),
which is driven as in Eq. (1):

H̃ (t ) = H̃ − g̃
∑

l

(e−i�̃tσ+
l + H.c.). (15)
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The transformation (5) still maps Eq. (2) to a time-
independent Schrödinger equation with the new effective
static Hamiltonian H̃st = H̃ − (�̃/2)

∑
l σ z

l − g̃
∑

l σ x
l . The

time evolution of observables in a driven system has
once again been mapped to a sudden quench problem. It
would be interesting to explore this idea further in interacting
models, such as when H̃st describes the Heisenberg or XXZ
model, where potentially integrability can be harnessed to
perform exact calculations.

Another scenario worthy of attention is to consider a prob-
lem in which the parameters of the static Hamiltonian describe
a different phase to the initial Hamiltonian. One may then
expect to see signatures of dynamical phase transitions in
the nonequilibrium dynamics, such as kinks in the Lochsmidt
echo [75,76]. Further exploring the lattice limit of Zamolod-
chikov’s perturbed Ising field theory [55], which features
interesting collective excitations related to an exotic hidden E8

algebraic structure, is interesting. Such studies would require
detailed numerical analysis (perhaps in the scaling limit [77]),
an avenue left to future works.
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