
PHYSICAL REVIEW B 103, L140406 (2021)
Letter

Skyrmions in twisted van der Waals magnets

Muhammad Akram and Onur Erten
Department of Physics, Arizona State University, Box 871504, Tempe, Arizona 85287-1504, USA

(Received 8 August 2020; revised 17 March 2021; accepted 31 March 2021; published 13 April 2021)

Magnetic skyrmions in two-dimensional (2D) chiral magnets are often stabilized by a combination of a
Dzyaloshinskii-Moriya interaction and an external magnetic field. Here, we show that skyrmions can also be
stabilized in twisted moiré superlattices with a Dzyaloshinskii-Moriya interaction in the absence of an external
magnetic field. Our setup consists of a 2D ferromagnetic layer twisted on top of an antiferromagnetic substrate.
The coupling between the ferromagnetic layer and the substrate generates an effective alternating exchange
field. We find a large region of the skyrmion crystal phase when the length scales of the moiré periodicity and
skyrmions are compatible. Unlike chiral magnets under a magnetic field, skyrmions in moiré superlattices show
an enhanced stability for the easy-axis (Ising) anisotropy which can be essential to realize skyrmions since most
van der Waals magnets possess easy-axis anisotropy.
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I. INTRODUCTION

The discovery of ferromagnetism in two-dimensional (2D)
monolayer CrI3 and other 2D van der Waals (vdW) materials
opened a new window for exploring low-dimensional mag-
netism and its applications in spintronics [1–9]. The properties
of 2D materials can be controlled by external parameters
[10–14] and are highly sensitive to stacking and twisting be-
tween the layers [12,15–18]. In particular, with the discovery
of superconductivity in twisted bilayer graphene [12,18], there
has been tremendous progress on exploring moiré superlat-
tices both experimentally and theoretically [19–24]. In terms
of magnetism, stacking order and twisting can significantly al-
ter the interlayer exchange as the exchange is highly sensitive
to atomic registries [25–30].

Magnetic skyrmions [31] are nanoscale vortexlike spin
textures that were first observed in noncentrosymmetic bulk
magnetic materials such as MnSi [32,33], (FeCo)Si [34], and
FeGe [35]. Skyrmions are topological defects, and they ex-
hibit novel transport phenomena such as the topological Hall
effect and topological Nerst effect [36,37]. In recent years
skyrmions received ample attention due to their potential for
spintronics applications and memory storage devices [38].
In most cases, skyrmions are stabilized by the interplay of
the Dzyaloshinskii-Moriya (DM) interaction and the external
magnetic field [32,33,39]. In this Letter, we explore the pos-
sibility of stabilizing magnetic skyrmions in the absence of
an external magnetic field in moiré superlattices. We consider
a ferromagnetic (FM) monolayer on an antiferromagnetic
(AFM) substrate with Néel order. Twisting the FM layer by
an angle θ produces moiré patterns as shown in Figs. 1(a)
and 1(c). Ferromagnetic coupling between the substrate and
the FM monolayer leads to an alternating exchange field for
the moiré superlattice as shown in Fig. 1(b). Our setup is
motivated from Ref. [30]. However, unlike Ref. [30], which
includes a dipole-dipole interaction to stabilize the magnetic

skyrmions, we consider a DM interaction which is the pri-
mary interaction for magnetic skyrmions in chiral magnets
[32,33,40–42].

Our main results are summarized in Figs. 2 and 3. We
show that (i) the skyrmion crystal (SkX) is stabilized as a
function of exchange coupling between the layers (Jex) and
moiré periodicity. (ii) Even though SkX can be stabilized for
a wide range of twisting angle, we find the optimal moiré
periodicity to be about L = 9LD, where LD = (J/D)a is the
intrinsic length scale for skyrmions. (iii) Unlike chiral mag-

FIG. 1. (a) Schematic of our setup of a FM monolayer twisted on
top of an AFM substrate with Néel order. We consider a honeycomb
lattice for both the monolayer and the substrate. (b) Exchange field
due to interlayer coupling. (c) Moiré pattern due to a small twisting
angle between the FM monolayer (green) and the topmost layer of
an AFM substrate (red and black). Three local atomic registries R0,
R1, and R2 are zoomed which match the atomic registries of different
interlayer translations.
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FIG. 2. A = 0 phase diagram at different moiré periods and exchange field. (a) Moiré period L vs maximum interlayer exchange field
Bmax phase diagram with spiral (Sp) and skyrmion crystal (SkX) phases. Here, LD = (J/D)a, where a is the lattice constant and the purple
diamonds correspond to error bars. The dashed lines at L = 5LD and L = 8LD represent the cross sections of Figs. 3(a) and 5, respectively.
(b)–(d) Magnetization texture and (e)–(g) topological charge density in 1 × 2 moiré supercells for L/LD = (5, 8, 11) and BmaxJ/D2 = 1.73 as
marked by the �,�,� symbols in (a). The colors represent an out-of-plane component (mz ) of magnetization and topological charge density
(χ ) in (b)–(d) and (e)–(g), respectively. The arrows show the in-plane component of magnetization in (b)–(d) and the dotted lines represent
1 × 2 moiré supercells in (b)–(g).

nets under a magnetic field, we find an extended region of SkX
for easy-axis anisotropy. (iv) We show that a large fraction of
the topological charge q = 1

4π

∫
d2rm̂ · (∂xm̂ × ∂ym̂) of the

magnetic skyrmions is concentrated at the edges and splits
into three parts for large moiré periodicity and large easy-axis
anisotropy. This effect arises due to the anisotropic shape of
the skyrmion.

II. MODEL

Before we delve into the analysis of the effective magnetic
Hamiltonian, we first describe our setup. As mentioned above,
we follow the procedure of Ref. [30] to derive the effective in-
terlayer exchange field. We consider a FM monolayer twisted
on top of an AFM substrate, both on a honeycomb lattice
with the same lattice constant a. For the twisting angle θ , the
moiré period is given by L = a/2 sin(θ/2). For a small angle
θ and/or lattice mismatch δ, L ≈ a/

√
θ2 + δ2 (large period),

the local atomic registries on length scales smaller than L but
larger than a match the atomic stacking of different interlayer
translations r as shown in Fig. 1(c). Hence the moiré superlat-
tice can be described by the interlayer translation vector r(R)
that gives the atomic registry at position R. The interlayer
exchange coupling between the AFM substrate and FM layer
is different at different positions due to the different atomic
stackings of a monolayer and substrate and this leads to a
spatially dependent exchange field B(R) as shown in Fig. 1(b).
For example, at position R1 the coupling aligns the spins of the
2D layer (green) in the positive z direction when it sits on top
of an AFM sublattice with spins up (black) and the spins align

in the opposite direction at R2 when it is on top of an AFM
sublattice with spins down (red). The interlayer exchange field
at interlayer translation r is given by [30]

Bτ (r) =
∑
j,τ ′

Jτ ′
ex (r − ξτ + R j )m j,τ ′ , (1)

where Jex is the interlayer coupling coefficient, m is the mag-
netic moment of the topmost layer of the AFM substrate,
{τ, τ ′} = {A, B} represents the two in-equivalent sites in a unit
cell, ξA = 0, ξB = {0, a}, and the summation j is over the
Bravais lattice. The total interlayer exchange field per unit cell
is given by summing the fields of sites A and B,

B(r) = BA(r) + BB(r). (2)

This approximation holds when the interlayer coupling Jex is
small as compared to intralayer coupling J . In general, Jex < J
holds for vdW magnets as the interplane exchange is expected
to be much smaller than the intraplane exchange. We used
the following coupling form that decays exponentially at long
distances,

Jτ ′
ex (r − ξτ + R j ) = J0

exe−
√

(r−ξτ +ξ
τ ′ +R j )2+d2

r0 , (3)

where d is the interlayer separation and r0 is the decay length.
In our calculations we used d = a, r0 = a, and this leads to

Bmax ≈ 1.9244 × 10−2J0
ex. (4)

Next we describe our model for the monolayer. We con-
sider a magnetic model for a 2D honeycomb lattice which is
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FIG. 3. L = 8LD phase diagram. (a) Anisotropy A vs maximum interlayer exchange field Bmax phase diagram with ferromagnetic (FM),
spiral (Sp), skyrmion crystal (SkX), and mixed state (Sp + FM). Here, LD = (J/D)a, where a is the lattice constant. (b)–(d) Magnetization
texture in 1 × 2 moiré supercells and (e)–(g) spin structure factor for (�,�,�) symbols marked in (a). The parameters corresponding to these
symbols are as follows: � = {A = −0.6D2/J, Bmax = 1.15D2/J}, � = {A = 0.3D2/J, Bmax = 0.38D2/J}, and � = {A = 1.14D2/J, Bmax =
0.58D2/J}.

relevant to 2D vdW magnets such as trihalides [4],

H = −J
∑
r,μ

Sr · (
Sr+δ̂μ

) − D
∑
r,μ

[
d̂μ · (Sr × Sr+δ̂μ

)
]

− Ac

∑
r,μ

[
(Sr · d̂μ)

(
Sr+δ̂μ

· d̂μ

)] + As

∑
r

(
Sz

r

)2

−
∑

r

B(Rr ) · Sr, (5)

where �Sr is the local moment at site r and δ̂μ are the three
nearest neighbors on the honeycomb lattice. J is the ferro-
magnetic Heisenberg exchange coupling, and D is the DM
coupling [43]. Ac and As are the compass and single-ion
anisotropies, respectively. The DM vector d̂i = ẑ × δ̂i is set by
the symmetry and originates due to the inversion symmetry
breaking on the surface. However, the microscopic mecha-
nism for the DM interaction in insulating vdW magnets is
different than metallic multilayers since the former is due to
the superexchange interaction in the presence of an electric
field as originally discussed by Moriya [43], whereas the latter
can be ascribed to asymmetric interaction paths proposed by
Fert and Levy [44,45]. B(R) is the interlayer exchange field
with the twisted substrate. To explore the phase diagram of
H , we consider the free-energy functional in the continuum
F[m] = ∫

d2rF (m), where m(r) is the local magnetization.
We set the lattice constant a = 1. The free-energy density has
the following four components,

F (m) = Fiso + FDM + Faniso + Fmoire, (6)

where

Fiso = F0(m) + 3

2
(J/2)

∑
α

(∇mα )2, (7)

FDM = −3

2
D(mz∂xmx − mx∂xmz )

+ 3

2
D(my∂ymz − mz∂ymy), (8)

Faniso = −3

2
Ac[(mx )2 + (my)2] + As(m

z )2

+ 3Ac

4
[my(∂xmy + ∂ymx )

− mx (∂xmx − ∂ymy)], (9)

Fmoire = −B(R) · m. (10)

We absorb a factor 3
2 in J , D, and Ac and define the effective

anisotropy A = Ac + As which can be positive (easy plane)
or negative (easy axis or Ising). The last two terms in Faniso,
given as ∼[my(∂xmy + ∂ymx ) − mx(∂xmx − ∂ymy)], have no
contribution to the free energy for systems with periodic
boundary conditions since they are total derivatives. To obtain
the ground state spin configuration m, we solve the coupled
Landau-Lifshitz-Gilbert (LLG) equations [46]

dm
dt

= −γ m × Beff + αm × dm
dt

, (11)

where Beff = −δH/δm, γ is the gyromagnetic ratio, and α is
the Gilbert damping coefficient. We start from different initial
states1 and compare the energies of the final states to get the
actual ground state. To solve LLG equations numerically we
used the midpoint method [47] by discretizing the effective
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magnetic field Beff = −δH/δm on 1 × 2 moiré supercells. We
used LD = (J/D)a = 10a to construct the phase diagrams and
the results were also verified at various points for larger values
of LD. The magnitude of the magnetization was kept constant
at each grid point after each time step enforcing the hard spin
constraint, |m|2 = 1, and periodic boundary conditions were
imposed at the boundaries. There is an unavoidable error due
to solving the LLG equations on a discrete lattice. The error
is small as long as the variation of the magnetization is small
within the neighboring sites. We checked that our results are
robust as a function of increasing system.

Our method can only capture magnetic orders that are
commensurate with the 1 × 2 moiré supercell. However, in
the limit of Jex → 0, the ground state is a spiral with the wave
vector q � D/J for weak anisotropy [39] which is in general
not commensurate with the moiré supercell. Therefore, our
method is not suitable to explore the weak Jex limit. Such in-
commensurate phases and incommensurate to commensurate
phase transitions have recently been analyzed in Ref. [48].
The parameters used in this Letter lie outside the regime of
incommensurate phases [48], yet it is not possible to extrapo-
late our results to the Jex → 0 limit due to this reason.

III. RESULTS

We start by exploring the interplay between the moiré
periodicity L and Bmax as shown in Fig. 2 for A = 0. Bmax is
the maximum value of interlayer exchange magnetic field. As
shown in Fig. 1(b), the moiré supercell splits into two triangles
of opposite alternating effective magnetic field which is maxi-
mum at the centers and vanishingly small at the corners of the
triangles. Therefore, in the limit of large Bmax, the magnetiza-
tion aligns with the effective magnetic field at the center of the
triangles, creating two ferromagnetic domains separated with
a domain wall whose chirality is set by D. The only degree of
freedom left that determines the ground state is the magneti-
zation at the corners of the triangles which creates an effective
triangular lattice. In particular, if the magnetization at the
corners is ferromagnetic, the state is a skyrmion whereas a
stripe order gives rise to a spiral phase. We find that the ground
state is a spiral for a low exchange field. As we increase
the field, the SkX phase starts at the moiré period L/LD ≈ 9
which corresponds to the optimum angle between the layer
and the substrate. As we further increase the field, we get SkX
for a range of values around an optimum period. This range in-
creases with increasing the exchange field. Unlike skyrmions
in chiral magnets where the size of the skyrmion is set by LD,
here we find that the size of skyrmions is determined by the
moiré period. On the other hand, LD determines the boundary
length between the interior and the exterior of the skyrmions.
For a small moiré period, skyrmions are small and their shape
is nearly circular as shown in Fig. 2(b). Figure 2(c) shows
that as the period increases, the size of the skyrmion also
increases and it takes the triangular shape of the exchange

1We consider multiple random configurations as well as ferromag-
netic states pointing along the (0,0,1), (1,1,5), (1,1,4), (1,1,3), (1,1,2),
(1,1,1), (1,1,0), (2,2,1), (3,3,1), (4,4,1), (−1,−1, 0), (−1, −1, −1),
(−1, −1, −2), (−1, −1, −3), and (0, 0, −1) directions.

FIG. 4. Evolution of magnetization texture, topological
charge density χ , and spin structure factor I (Q) for
AJ/D2 = {−1.2, −0.6, 0} at L = 8LD.

field. The corners of skyrmions get sharper with increasing
L. Unlike the skyrmions in chiral magnets, we find that a
large fraction of the topological charge is concentrated at the
edges of the skyrmion. This fraction increases with increasing
L. There is also a small fraction of opposite charge between
the skyrmions which decreases with increasing L. This charge
arises due to the antivortices between the skyrmions [49].
For large L, the topological charge further splits into three
parts due to the triangular shape of the skyrmion as shown
in Fig. 2(g).

Next, we explore the effects of anisotropy A at around
optimal angle L = 8LD as shown in Fig. 3. At low exchange
field, we obtain a spiral phase for a wide range of A, a small
ferromagnetic phase at the lowest negative values of A, as well
as a mixed (FM + Sp) phase at the largest positive values
of A. As the field increases, initially we get SkX near the
lowest negative values of A that corresponds to easy-axis
anisotropy. By further increasing the field, the range of SkX
gradually increases and eventually occupies the whole phase
diagram. Figures 3(b)–3(d) show the local magnetization and
Figs. 3(e)–3(g) show the spin structure factor I (Q) ∝ |〈mQ〉|2
for the three phases. mQ is the Fourier transform of the mag-
netization. Unlike an isotropic SkX which has six peaks on
the circle in the spin structure factor, we find four peaks lie
on a circle and two peaks lie inside the circle. This is due to
the anisotropic triangular shape of the SkX. The spiral has two
peaks at Q = ±Q0 and the mixed state (FM + Sp) has three
peaks including the Q = 0 from the FM and Q = ±Q0 from
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FIG. 5. Anisotropy A vs maximum interlayer exchange field Bmax

phase diagram with ferromagnetic (FM), spiral (Sp), skyrmion crys-
tal (SkX), and mixed state (Sp + FM) phases at L = 5LD. Here,
LD = (J/D)a, where a is the lattice constant.

the spiral phase. The intensity of the Q = 0 peak increases
with increasing A and decreases with increasing exchange
field Bmax. On the other hand, the intensities corresponding to
the spiral wave vectors have the opposite behavior of Q = 0
with A and Bmax.

The properties of SkX also depend on the anisotropy A.
Figure 4 shows the magnetization, spin structure factor, and
topological charge density as a function of A for the moiré
period L = 8LD. For A = −1.2D2/J the skyrmion has a sharp
boundary wall where magnetization changes abruptly and
then it changes slowly inside the skyrmion. The sharpness of
the boundary wall decreases with increasing A and the change
in magnetization inside the skyrmion increases with increas-
ing A. For A = −1.2D2/J , a large fraction of topological
charge is concentrated at the boundary wall of the skyrmion

and a small fraction lies inside the skyrmion. There is also
a small fraction of opposite charge between the skyrmions.
The concentration of charge at the boundary decreases with
increasing A and the central charge increases with increasing
A. The fraction of opposite charge between the skyrmions also
increases with increasing A [49].

We also studied the effects of anisotropy for a nonoptimal
angle at L = 5LD. As shown in Fig. 5, SkX is highly sup-
pressed in this case but still persists for a large exchange field
and easy-axis anisotropy. Suppression of SkX is due to the
fact that the moiré supercell is too small with respect to the
optimal size of the skyrmions.

Our results apply to a wide range of vdW magnets since
the primary constraint in our model is the requirement that
Jex < J which is in general satisfied for vdW magnets. Our
phase diagrams span a wide range of parameters and for a
fixed twisting angle, our results scale with AJ/D2.

IV. CONCLUSION

We have shown that a skyrmion crystal can be stabilized
in moiré superlattices in the absence of an external magnetic
field. We found a large SkX phase for easy-axis anisotropy
which can be essential to stabilize skyrmions in vdW magnets
such as CrI3 [4]. In particular, for optimal moiré periodicity
SkX occupies the majority of the phase diagram. We find
that the properties of the skyrmion can be tuned with the
moiré periodicity and anisotropy. Unlike skyrmions in chiral
magnets, the topological charge density depends on the size of
the skyrmions and it is concentrated at the edges for skyrmions
with large L.
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