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We investigate a class of periodically driven many-body systems that allows us to extend the phenomenon of
prethermalization to the vicinity of isolated intermediate-to-low drive frequencies away from the high-frequency
limit. We provide numerical evidence for the formation of a parametrically long-lived prethermal plateau,
captured by an effective Floquet Hamiltonian computed using the replica inverse-frequency expansion, and
demonstrate its stability with respect to random perturbations in the drive period. Considering exclusively
nonintegrable Floquet Hamiltonians, we find that heating rates are nonuniversal: we observe Fermi’s golden rule
scaling, power-law scaling inconsistent with the golden rule, and non-power-law scaling, depending on the drive.
Despite the asymptotic character of the inverse-frequency expansion, we show that it describes the thermostatic
properties of the state all along the evolution up to infinite temperature, with higher-order terms improving the
accuracy. Our results suggest a dynamical mechanism to gradually increase the temperature in isolated quantum
simulators, such as ultracold atoms, and open up an alternative possibility to investigate thermal phase transitions
and the interplay between thermal and quantum criticality using Floquet drives.
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Periodically driven (Floquet) systems bring a new set of
tools to study quantum phenomena [1–6]. A prominent exam-
ple is Floquet engineering – the use of periodic modulation
to ascribe new properties to static systems. Experimentally,
periodic drives are used to engineer topological properties
in photonic insulators [7–9], or simulate artificial magnetic
fields [10–17], Z2-lattice gauge theories [18,19], and strongly
interacting models [20,21] using ultracold atoms and quan-
tum solids [22–24]. Besides the experimental emulation of
unexplored exotic static states, periodic modulations have also
brought novel, truly dynamic phenomena, revealing phases of
matter without equilibrium counterparts [25–34].

Conceptually, periodically driven systems define a useful
framework to systematically address phenomena in nonequi-
librium dynamics, such as equilibration and thermalization
[35,36]. For drive frequencies much larger than the energy
of single-particle processes in the nondriven Hamiltonian,
the dynamics of Floquet systems can be divided into four
overlapping stages: (I) the initial constrained thermalization
and the following (II) prethermal plateau, which lasts ex-
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ponentially longer with increasing drive frequency, are both
captured by a local approximate effective Hamiltonian Heff

[37]. Eventually, lack of energy conservation sets in, and
(III) unconstrained thermalization drives the state to (IV)

FIG. 1. (Schematic) Heating times �−1 against the drive period
T for the class of models in Eq. (1). A prethermal plateau appears in
ε vicinity of commensurate points T ∗

k , shown in the time evolution of
the entanglement entropy Sent (�) at stroboscopic times � (insets): (I)
an initial transient of constrained thermalization is followed by (II)
a prethermal plateau with subsequent (III) unconstrained thermaliza-
tion leading to (IV) a featureless infinite temperature state.
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infinite-temperature [38–48]. It was demonstrated that similar
prethermal plateaus can be universally protected by topolog-
ical effects [49,50], and have been shown to occur also in
quasi-periodically driven systems [30,51,52], nonlocal sys-
tems such as the Floquet SYK model [53], and for random
dipolar driving [52]. A prethermal plateau has also been found
to form in isolated (semi-)classical Floquet systems, implying
that the underlying mechanism is not governed by quantum
effects [54–60]. At lower drive frequencies, a proliferation
of Floquet many-body resonances [61] causes the system to
absorb energy, and prethermalization gives in to immediate
heating to a featureless infinite-temperature state.

In this work, we propose a new extension of the notion
of prethermalization into the intermediate-to-low frequency
regime using a family of step-driven Hamiltonians, for which
energy conservation holds exactly for a series of increasing
commensurate driving periods T ∗

k . In a finite vicinity around
T ∗

k , as measured by a small number 0 � ε < 1, we observe
numerically the four stages of thermalization (Fig. 1) famil-
iar from the high-frequency limit and show that an effective
Hamiltonian computed using the replica inverse-frequency
expansion [62] provides an analytical description. We then an-
alyze the ε dependence of the timescales required to reach the
infinite-temperature state: for nonintegrable drives, we show
a Fermi’s golden rule scaling implying the durations of the
prethermal plateau scales as ε2. Interestingly, for integrable
drives, we find exceptions to the predictions of the golden rule,
leading to non-power-law scaling. Hence, for the first time, we
demonstrate that heating rates may represent a nonuniversal,
drive-dependent property of the dynamics. This appears at
odds with the common paradigm that heating rates can be
estimated in a model-independent way [46,47] and presents
a new challenge for the theoretical understanding of (pre-)
thermalization in Floquet systems.

The asymptotic character of the inverse-frequency expan-
sion has been shown to cause its failure to capture the onset
of heating in the unconstrained thermalization stage of the
dynamics [61]. In contrast to common beliefs, we show that it
is the expansion Hamiltonian Heff , that the system thermalizes
to, past the prethermal plateau. We demonstrate that, at any
fixed stroboscopic time, the system is in an (approximate)
thermal state, with temperature set by the instantaneous en-
ergy density of Heff . The infinite temperature state is then
approached with a gradually increasing temperature. This
slow-heating dynamics offers an exciting new possibility to
control temperature in isolated quantum simulators, such as
ultracold atoms, trapped ions and superconducting circuits,
using a periodic drive.

Finite frequency prethermalization. Consider the family of
T -periodic Floquet unitaries

UF (T ) = e−iT H/4e−iTV/2e−iT H/4 = e−iT HF , (1)

parametrized by the drive Hamiltonian H and the kick op-
erator V , and subject to two constraints: (i) H can be either
integrable or nonintegrable, so long as it is local and the
average Hamiltonian Have = H +V is nonintegrable; (ii) the
kick operator V has a commensurate spectrum, i.e., there
exist periods T ∗

k with k ∈ N where exp(−iT ∗
k V ) = 1. For

instance, V can be any short-range density-density inter-
action in strongly correlated lattice models; alternatively,

for this paper, we focus on spin-1/2 systems and, without
loss of generality, choose a global magnetic field. We con-
sider T -periodic stroboscopic dynamics t = �T (� ∈ N) with
U (�T ) = [UF (T )]�, generated by the exact Floquet Hamilto-
nian HF ; in the high-frequency limit, it can be approximated
by an effective Hamiltonian using an inverse-frequency ex-
pansion, HF ≈Heff = Have+O(T ).

By construction, at T = 2T ∗
k = 2πk/γ with k ∈ N, the

dynamics of Eq. (1) defines a quench problem to the static
Hamiltonian H : UF (2T ∗

k ) = exp(−iT ∗
k H ), and heating is pro-

hibited by energy conservation. Note that k = 0 corresponds
to the familiar infinite-frequency limit, where the Floquet
dynamics features a prethermal plateau. Hence, this setup
presents a natural way to generalize the concept of prether-
malization to intermediate and low frequencies (k >0), on
the order of the single-particle energy scales in H and V . In
this paper, we investigate the imminent question about the
heating behavior of the family of drives from Eq. (1) in the
ε vicinity of the commensurate periods T = 2T ∗

k with k >0
(Fig. 1). Coincidentally, our analysis is directly applicable
to periodically kicked systems [42]: for T = 2(T ∗

k +ε), the
dynamics of Eq. (1) reduces to that of the system H subject
to T -periodic kicks V of strength ε: UF (T = 2(T ∗

k + ε)) =
e−iT H/4e−iεV e−iT H/4.

Nonintegrable drive. First, let us investigate the dynamics
generated by the nonintegrable spin-1/2 mixed-field Ising
model with periodic boundary conditions

H1 =
L∑

j=1

Jσ z
j+1σ

z
j + hzσ

z
j + hxσ

x
j , V = γ

L∑

j=1

σ x
j . (2)

The Pauli matrices obey [σα
i , σ

β
j ] = 2iδi jε

αβγ σ
γ
j . We work in

the zero momentum sector of positive parity, where the only
local integral of motion of H1 is energy. For concreteness,
we prepare the system in the domain wall state |ψi〉 = P| ↑
. . . ↑↓ . . . ↓〉 projected onto the same symmetry sector 1.
For T = 2(T ∗

k +ε) with k >0, H1, and with it Heff = H1/2+
O(ε), exhibits Wigner-Dyson level-spacing statistics. Thus,
since the dynamics generated by Eqs. (1) and (2) violates
energy conservation, according to the Eigenstate Thermaliza-
tion Hypothesis (ETH), we expect to observe thermalizing
dynamics [35].

We compute the exact evolution of the system, |ψ (�)〉 =
U �

F |ψi〉, numerically at stroboscopic times �T up to 5 ×
104 driving cycles. Since we are interested in observable-
independent features of the dynamics, we focus on the
entanglement entropy density Sent (�) = − 1

LA
trAρA ln ρA, with

the reduced density matrix (RDM) of subsystem A, ρA =
trĀ|ψ (�)〉〈ψ (�)|. Figure 2 a shows that a qualitatively simi-
lar behavior to the familiar infinite-frequency point (k = 0),
occurs in the neighborhood of the commensurate points T ∗

k
with k >0. Indeed, for sufficiently small ε, we observe all four
stages of thermalization (Fig. 1). Infinite-temperature finite
size effects are taken into account using the Page correction
[63]. In particular, prethermalization occurs in the ε vicinity of

1We checked that, our conclusions are independent of the choice of
initial pure state.
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FIG. 2. Stroboscopic evolution of the entanglement entropy Sent

in the ε vicinity of the commensurate point T ∗
k generated by the

Hamiltonian H1. (a) Strictly periodic drive and (b) noise-perturbed
drive with δ/T = 0.005 (see text). We display a logarithmically
decreasing number of data points at large �. (c) Heating rate �−1 vs
ε in the noise-perturbed and periodic drives, defined by the dashed
horizontal black line. We choose 15 logarithmically spaced ε values,
ε ∈ [3 × 10−4, 3 × 10−1] (the interval limits including). The param-
eters are hz/J = 0.809, hx/J = 0.9045, γ /J = 1, and k = 2. The
system and subsystem sizes are L = 20 and LA = 10, respectively.

the commensurate point T ∗
k away from the infinite-frequency

point k = 0. Observing the prethermal physics in Sent, we
anticipate that this behavior is generic.

The duration of the prethermal plateau is parametrically
controlled by the deviation ε from the commensurate point
(Fig. 1). To quantify the dependence, we define the heating
time �−1(ε) as the duration at which the entropy curves
reach half the value between the prethermal plateau and the
Page-corrected maximum entropy. The heating rate �(ε) cor-
responds to the inverse heating time. Recall that, for k =
0, heating times are exponentially long [46,47], i.e., �−1 ∝
exp(ξ/ε)2. In contrast, for the dynamics generated by H1 at
k >0, here we find algebraically suppressed heating �−1 ∝
ε−α with α≈2 [Fig. 2(c)], in accord with Fermi’s golden
rule [64]. Despite the established belief that this behavior is
generic, we will see that heating rates are, in fact, model-
dependent. Curiously, for k >0, we find no change in the
heating times with k [65].

The golden rule heating exponent indicates a fully ergodic
dynamics. Yet, a careful examination of the simulation data
suggests that, despite the nonintegrability of Heff , the dy-
namics is not completely ergodic out to the very long times.
Indeed, the entanglement curves for some values of ε do
not reach infinite temperature after leaving the prethermal
plateau. This implies that the system does not explore the
entire available Hilbert space ergodically [Fig. 2(a)]; instead
it gets stuck in a nonthermal steady state. We verified that
this peculiar feature is a finite size effect [65]. Yet, we report
a novel procedure which allows us to conveniently remove
it at finite system sizes by perturbing the periodicity of the
drive, e.g. by adding to the duration of the Hamiltonian

2Up to a logarithmic correction in one dimension [48].

FIG. 3. (a) Spectrum of the RDM (crosses) against the eigenval-
ues of HA

eff ≈ HA
1 /2 for three different values of ε; the dashed line

indicates the solution for β from Eq. (3). (b) β as a function of ε. The
solid green line with error bars marks the values extracted from the
fits in (a) at � = 5 × 104. The error bars constitute the uncertainty of
the least square fit; the solid orange line is the ETH prediction for the
prethermal plateau; the dashed orange line is the solution to Eq. (3)
using the instantaneous energy density E (�) at � = 5 × 104. Filled
circles indicate the three values of ε shown in (a). The inset shows
the same quantities as a function of �. We used LA = 4 and M = 20;
the model parameters are the same as in Fig. 2.

H a small number δ sampled uniformly at random from
[0, 0.05T ] at every drive cycle: UF → Uδ (T = 2(T ∗

k + ε)) =
e−i(T +δ)H/4e−iεV e−i(T +δ)H/4. Notably, despite breaking the pe-
riodicity, noise-perturbed drives do not remove or shrink the
prethermal plateau for sufficiently small δ (Figs. 2(b) and
2(c)]. This is expected for truly ergodic/Markovian dynamics;
it can be understood formally by noticing that the leading
order effective Hamiltonian, H1/2, only acquires a multiplica-
tive correction of [1 + δ/(2T )] [65].

Although the prethermal plateau is clearly discernible in
the dynamics, its existence does not immediately imply the
thermal property of the underlying state. Since the effective
Hamiltonian is nonintegrable already to leading order in ε,
motivated by ETH we expect the RDM ρA to evolve into
a thermal state ρA

th [66,67] with temperature, corresponding to
the energy density of the initial state [35,68]. To demonstrate
the applicability of ETH we solve the implicit equation

Ei = 1

LA
trA

(
ρA

thHA
eff

)
, ρA

th = e−βHA
eff

/
trAe−βHA

eff (3)

for β, where Ei = 〈ψi|Heff |ψi〉/L is the initial energy den-
sity. This provides us with a theoretically predicted reference
value for the inverse (prethermal) temperature β. We can now
compare it against the value we obtain from the numerical
data: we can extract a temperature from the spectrum of
the reduced diagonal density matrix ρA

d (�) = trĀρd (�), where
ρd ≈ 1

M

∑M
m=0 |ψ (�+m)〉〈ψ (�+m)| is the density matrix of

the diagonal ensemble [69].
Figure 3(a) indicates that, starting from a pure state of

the full system, the subsystem evolves into a (approximate)
thermal state, whose temperature matches well the value
predicted by ETH with respect to Heff [65]. In particular,
for ε � 10−3, the long-lived prethermal plateau appears to
be well described by a thermal density matrix with inverse
temperature β(Ei ). Remarkably, for the first time, the data
allow us to make predictions beyond those of ETH for the
prethermal plateau: When the system starts heating up and
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FIG. 4. (a) Stroboscopic time evolution for different Jε (J = 0.6) with the initial state thermal with respect to H (0+1)
eff at β = 0.8. (b) β

as a function of �: the solid red line with error bars marks the values extracted from the spectrum of the RDM for a subsystem LA = 4 from
the evolution in (a) using the eigenvalues of H (0+1)

eff (E (0+1)
A ) (colored dots serve as a guide to the eye). The red dashed line is the solution to

Eq. (3), i.e., β(E (�)) (using E (0+1)
A ), with periodic boundary conditions on the subsystem [65]. The green lines show ETH-predicted (dashed)

and fitted (solid with errorbars) values of β(�) derived by using the eigenvalues of H (0)
eff ; the inset shows β(ε) at � = 104. (c) Stroboscopic time

evolution of the entanglement entropy (initial state thermal w.r.t H (0)
eff at β = 0.8 with J = 1) at Jε = 0.19 for different perturbation values

δ/T . (d) Heating times extracted from the data in (c) for different δ/T . The inset shows the scaling of heating times as a function of δ/T . The
remaining parameters are as in Fig. 2, except for L = 16 in (c) and (d).

leaves the prethermal plateau, its state at subsequent times is
still well-described (to an excellent precision) by a thermal
state with respect to the approximate Heff whose temperature
is set by the instantaneous energy density E (�) [cf. dashed and
solid lines, Fig. 3(b)]. This comes as a surprise, since heating
processes emerge due to nonanalytic terms present in HF but
missing from Heff to any order in the inverse-frequency ex-
pansion [61]. Consequently, Heff is not capable of predicting
the value of E (�) past the prethermal regime. Nonetheless,
given E (�) and Heff one can reconstruct the thermal state
of the system at the stroboscopic time �. By simulating
the dynamics of thermal initial states at different tempera-
tures, we ruled out any energy-density dependence of this
effect [65].

Integrable drive. While nonintegrable drives immediately
lift energy conservation and unlock thermalizing dynamics,
for integrable drives H the same small parameter ε breaks
both energy conservation and the integrability of Heff . An
example of such a system is the paradigmatic Floquet-Ising
chain that recently emerged as a convenient model to study
nonequilibrium phenomena [70],

H3 =
L∑

j=1

Jσ z
j+1σ

z
j + hzσ

z
j , V = γ

L∑

j=1

σ x
j . (4)

Although the zeroth-order approximation to HF (ε) is inte-
grable, higher-order terms contain nonintegrable corrections.
Applying the replica inverse-frequency expansion [62] to
resum a Baker-Campbell-Hausdorff subseries3 allows us to
analytically obtain a closed-form expression for the first-order
correction: H (0+1)

eff (ε) = H (0)
eff +H (1)

eff (ε) [cf. Ref. [65] for the
expression]. In contrast to the dynamics generated by H1, the

3The resummation based on the replica expansion requires a two-
step drive as opposed to the symmetric three-step drive in Eq. (1).
For the remainder of the paper we thus discuss the two-step drive:
UF (T ) = e−iT H/2e−iTV/2 [65]; we verified that our conclusions do not
depend on this gauge choice.

first-order correction is indeed decisive to properly capture
thermalization with respect to H3, as it is observed for rela-
tively large values of ε∼10−1 (Fig. 4). To substantiate this
claim, we initialize the system in a thermal state with respect
to H (0+1)

eff , and evolve it according to the exact protocol of
Eq. (1).4 Thermal states allow us to avoid any initial state
dependence that might spoil thermalization as ε → 0. Since
simulating exact thermal states is infeasible for the system
sizes of interest, we resort to quantum typicality to approxi-
mate a thermal state by an ensemble of pure states [65,71–74].
We then use the instantaneous energy density E (�) to solve
Eq. (3) and compare the obtained β against the value fitted
from the spectrum of the reduced diagonal density matrix.
Figure 4(a) and 4(b) shows that the prethermal physics in the
vicinity of the commensurate point T ∗

k admits an approximate
analytical description. Moreover, we verified that including
the first correction, H (0+1)

eff , results in a more accurate descrip-
tion of the thermalizing dynamics [cf. Fig. 4(b), dashed and
solid green lines]. Hence, the ability of the inverse-frequency
expansion (supplemented with the instantaneous energy den-
sity) to capture the physics of the system past the prethermal
plateau, applies equally to integrable and nonintegrable drives.
Note that this cannot be interpreted as thermalization with
respect to H3 alone which is applied for T � ε, since H3 and
V are both integrable.

Surprisingly, we find that the heating rates of the dynamics
generated by H3 do not obey a power-law scaling with ε. Ap-
plying an infinitesimal perturbation δ to maintain ergodicity
in the dynamics at long times, the duration of the prether-
mal plateau increases exponentially with ε over at least two
decades [Fig. 4(d)], in contrast to the Fermi’s Golden Rule
behavior observed for H1. We emphasize that this exponential,
�−1 ∝exp(−ξε), appears different from the scaling behavior
�−1 ∝exp(ξ/ε) close to the infinite-frequency point k = 0,
and thus, we do not expect it to survive as ε→0. To exhibit the

4In fact, we apply extra initial and final rotations as the replica
expansion is formulated for two-step drives [65].
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difference of the perturbation-free periodic evolution at δ = 0
with the golden rule prediction, we consider stronger pertur-
bations, and show that the heating rate dependence crosses
over to a powerlaw, albeit with an exponent larger than 2.
Thus, unlike for the nonintegrable drive H1, here we find a
clear dependence of the prethermal plateau duration on δ.
Interestingly, the absence of a Golden Rule scaling implies
a non-Markovian dynamics and thus the state retains some
memory of its evolution; in turn, this suggests the possibility
for a synchronization effect caused by the periodic dynamics
of H3, which opens up new avenues for further investigation,
e.g. considering disordered kick strengths γ → γ j , etc. At the
same time, our results show a clear heating rate dependence on
the drive model. This raises a question about the existence of
improved heating rate estimates, tailored for specific families
of Floquet drives.

Outlook. Extending prethermal Floquet physics beyond the
high-frequency regime lays the foundations for novel general-
izations of Floquet engineering in the low-frequency regime
[75]. They can be useful in experimental platforms where the
existence of higher bands or many-body processes renders the
high-frequency limit inaccessible. A concrete example would
be the observation of prethermal time crystalline behavior
around the commensurate points T ∗

k for k >0 [76]. Moreover,
experiments with ultracold atoms [77,78] can shed light on
the behavior of large system sizes. The slow thermal dynam-
ics, captured by the inverse-frequency expansion beyond the
prethermal plateau, offers an exciting new possibility to tune
temperature in isolated quantum simulators, without access to
a conventional thermal bath. This can be used, e.g., to trigger

and observe thermal phase transitions or study the interplay
between thermal and quantum criticality in a controlled way
using Floquet drives.
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