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Quantum phase transition of a two-dimensional quadrupolar system
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Ensembles with long-range interactions between particles are promising for revealing strong quantum col-
lective effects and many-body phenomena. Here we study the ground-state phase diagram of a two-dimensional
Bose system with quadrupolar interactions using a diffusion Monte Carlo technique. We predict a quantum phase
transition from a gas to a solid phase. The Lindemann ratio and the condensate fraction at the transition point
are γ = 0.269(4) and n0/n = 0.031(4), correspondingly. We observe the strong rotonization of the collective
excitation branch in the vicinity of the phase transition point. Our results can be probed using state-of-the-art
experimental systems of various nature, such as quasi-two-dimensional systems of quadrupolar excitons in tran-
sition metal dichalcogenide trilayers, quadrupolar molecules, and excitons or Rydberg atoms with quadrupole
moments induced by strong magnetic fields.
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Manipulation of the short-range interactions in ultracold
quantum gases has proven to be an efficient and productive
way to generate novel many-body phases [1–3]. Even more
evolved scenarios are realized in gases with long-range inter-
actions such as dipolar ones [4–6]. Dipolar particles interact
with each other via anisotropic and long-range forces, which
drastically change the structure of many-body phases in these
systems both in the free space and lattices [4–7]. Remarkable
progress in experiments with ultracold gases of large-spin
atoms [8–11] and polar molecules [12–14] has opened up fas-
cinating prospects for the experimental observation of novel
quantum phases, which are induced by the character of the
dipolar interaction. Examples include, in particular, rotoniza-
tion [15–19], crystallization [20–22], and supersolidity for
both dilute [23–32] and dense [20,21,33–37] dipolar sys-
tems. However, the interactions between atomic dipoles are
typically weak. This fact has stimulated the exploration of
novel platforms with both strong interparticle interactions and
sufficient tunability. Examples include long-lived excitons in
solid-state systems [38–45]. Remarkable advances in exper-
iments with monolayers of semiconducting transition metal
dichalcogenides (TMDs) [46,47] make them interesting for
revealing nonconventional quantum phenomena [48–52] in
the regimes that are beyond what can be achieved with ultra-
cold gases. TMD systems host long-lived excitons since the
overlap between wave functions of electrons and holes locat-
ing in separate layers is suppressed, and the separation results
in the appearance of the exciton dipole moment as it was pre-
dicted [38,39]. Dipolar excitons in solid-state systems might
manifest rotonization [20,37,53,54] and supersolidity [37].

Quadrupolar interactions present a peculiar example of
nonlocal interactions between particles [55–57], which can
be fine-tuned using external fields. This makes quadrupolar
systems a promising platform for performing the quantum
simulation and revealing novel many-body phases and uncon-
ventional quantum states [55–57]. Experimental realizations
of quadrupolar ensembles include quadrupolar molecules,
whose interaction is induced and tuned by external fields,
and quadrupolar excitons in solid-state systems. Quadrupolar
species of particles acquiring electric quadrupole moments,
such as Cs2 [58] or Sr2 [59,60], are available in experiments.
Moreover, they are stable against collapse and ultracold chem-
ical reactions at high densities, which are shortcomings for
experiments with dipolar molecules [12–14]. Recent studies
of TMD systems [61] have shown the rich many-body physics,
which is induced by the nature of quadrupolar interactions. We
also note that classical quadrupolar interactions arise in soft
matter in the description of nematic colloids. Their properties,
including phase transitions, have been extensively studied in
Refs. [62–68]. Besides, quadrupoles play an essential role in
astrophysical objects in ultrastrong magnetic fields, e.g., on
the surface of neutron stars [69]. However, a detailed mi-
croscopic study and ab initio simulations of the quadrupole
many-body system are still lacking.

Here we predict a quantum phase transition from a gas
to a crystal in a single-component two-dimensional (2D)
Bose system with centrally symmetric quadrupolar interac-
tions at zero temperature. We employ a diffusion Monte Carlo
(DMC) technique for calculating the parameters of the phase
transition and to study the effects of strong correlations in
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the gas phase. Our results are in the quantitative agreement
with predictions based on the quantum hydrodynamic (HD)
model. We observe a roton-maxon character of the collective
excitation branch. The predicted results can be probed in state-
of-the-art experiments with ultracold atoms (e.g., Rydberg
atoms), molecular ensembles, and TMD systems.

The Hamiltonian of a homogeneous system of N bosons
with the quadrupolar interaction is as follows:

H = − h̄2

2m

N∑
i=1

�i + Q2

ε

N∑
j<k

1

|r j − rk|5 , (1)

where m is the particle mass, ri is the 2D position of i-th
particle, Q is the quadrupolar moment, and ε is the dielectric
constant.

It is convenient to rewrite Hamiltonian [Eq. (1)] in a di-
mensionless form by expressing all the distances in units of
r0 = 3

√
mQ2/h̄2ε and energies in units of E0 = h̄2/mr2

0 . The
characteristic quadrupolar length r0 is directly proportional to
the quadrupole-quadrupole s-wave scattering length, as/r0 =
(eγE /3)2/3 = 0.706383 with γE = 0.577 . . . the Euler con-
stant. We calculate the zero-temperature phase diagram of the
system in terms of the dimensionless density nr2

0 , where n is
the 2D density of the system.

In order to find the system properties, we resort to the DMC
technique [71] based on solving the Schrödinger equation in
imaginary time and allowing one to obtain the exact ground-
state energy. The convergence is significantly improved by
using an importance sampling for which we chose the trial
wave function in the Nosanow-Jastrow product form [20]. Us-
ing the standard prescription, each particle in the solid phase
is localized close to its lattice site by a one-body Gaussian
term of variable width. An infinite width is used in the gas
phase which results in a wave function having translational
invariance. We chose the two-body Jastrow term as

f2(x) =
⎧⎨
⎩

C1K0(2x−3/2/3), x � xc,

C2 exp[−C3/x − C3/(L̄ − x)], xc � x � L̄/2,

1, L̄/2 � x,
(2)

where x = r/r0, L̄ = L/r0, L is the length of the smallest
side of the simulation box and xc is the variational parame-
ter (matching point between the two-body scattering solution
at short distances and the phononic long-range decay [70]).
Coefficients C1,C2,C3 are fixed by the condition of the conti-
nuity of the function and its first derivative.

The thermodynamic limit is then reached by increasing the
number of particles while keeping the density n = N/(Lx×Ly)
fixed and performing extrapolation to N → ∞ [72,73]. We
simulate systems containing N = 100, 144, 256, 484, and
1156 particles in a simulation box of size Lx × Ly with pe-
riodic boundary conditions. We use a square box with equal
sides Lx = Ly for simulation of the gas phase and a rectangular
box commensurate with an elementary cell of a triangular
lattice for the solid phase.

We find a quantum phase transition from a gas to a
solid phase at zero temperature. In order to demonstrate its
presence, we calculate the lowest energy in a state with
translational symmetry (i.e., gas) and a state in which the
translational symmetry is broken (i.e., solid). The phase tran-

FIG. 1. The macroscopic limit of the energy E/S (scaled with
classical n7/2 dependence) for the gas (circles) and the crystal (tri-
angles) as a function of the dimensionless density nr2

0 (the energy
E is measured in the dimensionless units h̄2/mr2

0 ). The position
of the transition point, nr2

0 = 2.10(7), is indicated by the arrow.
Inset: The quantity (E − μN )/S − ε0 as a function of the di-
mensionless density in the vicinity of the phase transition where
ε0 is an offset. The tangent dotted line indicates the coexistence
regime of two phases; its width is �nr2

0 = 0.026(4). The fit-
ting function is E/(NE0) = Ecls/(NE0) + A1(nr2

0 )7/4 + A2(nr2
0 )5/4 +

A3(nr2
0 )3/4. Fitting coefficients are A1 = 7.944, A2 = −0.388, and

A3 = 1.332 for gas at 0.8 < nr2
0 < 3 and A1 = 6.1478, A2 = 2.4524,

an A3 = 0.9878 for crystal at 1.6 < nr2
0 < 3.4, where Ecls/(NE0) =

A0(nr2
0 )5/2 with A0 = 2.359746 is the ground-state energy of a clas-

sical crystal.

sition density is obtained as the crossing between the energies
of the two states. The two equations of state are shown in
Fig. 1, where for convenience the energy E is scaled with
the system area S and density as (E/S)/n7/2. For small values
of the dimensionless density nr2

0 , the energetically favorable
state is a gas, whereas the solid phase remains metastable.
As the density is increased, the system experiences a first-
order quantum phase transition to a triangular lattice phase.
We estimate the transition density to be nr2

0 = 2.10(7) (see
Fig. 1) with the width of the coexistence of the phases �nr2

0 =
0.026(4). There are remarkable differences as compared to a
dipolar system which has a significantly larger critical density,
nr2

dd ≈ 290 in dipolar units rdd = 3.17as [20]. The difference
becomes even more evident in terms of the s-wave scattering
length, as the critical density is na2

s ≈ 1.05 for quadrupoles,
na2

s = 2900 for dipoles and nas ≈ 0.33 for hard disks [75].
The Lindemann ratio quantifies the fluctuations of particles

in a crystal and is defined as follows

γ =
√√√√ N∑

i=1

〈(
ri − rlatt

i

)2
/b2

〉
, (3)

where b = (4/3)1/4/
√

n is the triangular lattice period. We
find the Lindemann ratio to be γ = 0.269(4) at the transition
point. In the limit of high density, the potential energy dom-
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FIG. 2. (a) Typical examples of the pair correlation function
in gas (dashed line) and solid (solid line) phases at the density
nr2

0 = 2.2 obtained for N = 144 particles. (b) Static structure factor
in the vicinity of the phase transition in gas (circles) and trian-
gular solid (triangles) phases. Symbols, DMC data; lines, linear
phonons asymptotic S(k) = h̄k/(2mc), where the speed of sound
c = √

n/m d2(E/S)/dn2 is obtained from the equation of state; see
Fig. 1. The vertical arrow shows the position of the macroscopic peak
in the crystal. Insets show snapshots of the particles’ coordinates in
gas (left) and solid phases (right). Polygons indicate a frustrated (left)
and perfect (right) hexagonal short-range ordering present in gas and
solid phases, correspondingly.

inates and the energy gradually approaches that of a perfect
classical crystal corresponding to the horizontal line in Fig. 1.
For comparison, we also show in Fig. 1 the first correction to
the classical crystal energy arising from the zero-point motion
in harmonic approximation, E/S = Ecls/S + An11/4.

In order to quantify the two-body correlations, we calculate
the pair distribution function,

g2(r)=
∫ 2π

0

dϕ

2π

∫ Lx

0

∫ Ly

0

ds
LxLy

〈�̂+(s)�̂+(r+s)�̂(r+s)�̂(s)〉,
(4)

where ϕ is the polar angle of the vector r. We show charac-
teristic examples in Fig. 2. Close to the transition point, the
short-range correlations are very similar in both phases [see
Fig. 2(a) for separations smaller than the mean interparticle
distance]. Instead, there are qualitative differences for larger
separations r. In the gas phase, g2(r) approaches a constant
value already after a few oscillations. Instead, the oscillations
continue further in the solid phase, signaling the presence of
the diagonal long-range order.

The order parameter differentiating two phases is the
height of the peak in the static structure factor

S(k) =
∫

〈ρ̂(r)ρ̂(s)〉eik(r−s)drds/N, (5)

FIG. 3. The condensate fraction n0/n in the macroscopic system
as the function of the density in gas and solid phases. Circles, ex-
trapolation of Quantum Monte Carlo data to thermodynamic limit
performed by using HD theory [QMC + HD: input S(k)&g1(L/2)]
of Ref. [74]; red line, fit n0/n = exp [−(B0 + B1(nr2

0 )B2 )−2/4] in the
region 0.8 � n � 2.8, where B0 = −0.301, B1 = 0.639, and B2 =
−0.154. The discontinuity at the phase transition is shown with
arrows.

at the reciprocal lattice period kL = 2π
√

n(4/3)1/4 of the tri-
angular crystal, where ρ̂(r) is the density operator and 〈· · · 〉
denotes ground-state averaging. The characteristic feature of
a crystalline phase is that the value of S(kL ) is linearly pro-
portional to the number of particles and the peak becomes
macroscopic in the thermodynamic limit. This should be con-
trasted to the behavior in the gas phase in which the static
structure factor always remains finite; see Fig. 2 for character-
istic examples. In that case, S(k) is a monotonous function of
momentum at low densities and it becomes nonmonotonous
(i.e., a peak is formed) in the regime of strong quantum
correlations. The height of the peak increases as the density
is incremented and the phase transition from the gas to the
crystal happens when the critical value, S(k)max = 1.6(1), is
reached. There is a discontinuity in the order parameter, S(kL ),
across the phase transition point which is typical behavior for
the first-order phase transition. At the same time, the low-
momentum behavior, S(k) = h̄k/(2mc), is more similar in the
two phases which reflects a relatively minor change of the
speed of sound c across the transition [compare two dashed
straight lines at small momenta in Fig 2(b)]. The appearance
of the short-range ordering in the gas phase in the vicinity
of the critical density can be seen from the snapshots shown
in the inset of Fig. 2(b). The snapshot of the gas phase indi-
cates the formation of a local triangular lattice with vacancies
and dislocations, whereas a defect-free triangular lattice is
observed in the ground state of the solid phase.

The coherence properties are quantified by the condensate
fraction which is reported in Fig. 3. We have verified that
in a finite-size system, the long-range behavior of the one-
body density matrix (OBDM) g1(r) is well reproduced by
the HD theory of Ref. [74]. We use the HD theory for the
extrapolation of the OBDM in order to obtain the conden-
sate fraction according to n0/n = limr→∞ g1(r). We observe
a strong condensate depletion as the density nr2

0 is increased,
so the value n0/n becomes fairly small close to the gas-solid
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FIG. 4. Characteristic examples of the excitation spectrum in the
gas phase as obtained from Feynman relation. The formation of a
pronounced roton minimum is observed as density is increased and
the transition to the solid phase is approached.

transition. Even if the condensate fraction is small, n0/n =
0.02−0.04, conceptually it is important that it experiences
a sudden discontinuous jump from a finite value in the gas
phase to zero value in the solid phase. In other words, the
condensate fraction is another order parameter and together
with the height of the structure factor both order parameters
are discontinuous across the first-order phase transition. Both
order parameters have exactly the same critical point and as
a consequence a supersolid (simultaneous presence of both
order parameters) is absent in the present system.

The rotonization of the excitation spectrum is yet another
nontrivial effect that might be present in strongly correlated
systems and it deserves special attention [15–19]. Indeed,
rotonization of the collective excitation branch may poten-
tially lead to the spontaneous establishing of crystalline order
and formation of supersolid. One of the possible mechanisms
for supersolidity of dipolar systems is its formation near the
gas-solid phase transition [20,21,37]. Here we make evident
the rotonization of the spectrum in the quadrupolar system
by analyzing the Feynman relation which provides the upper
bound for the lowest border of the excitation spectrum,

εk = h̄2k2

2mS(k)
, (6)

in terms of the static structure factor S(k). Our results for
the excitation spectrum shown in Fig. 4 indicate the strong
rotonization of the collective excitation branch near the phase
transition. By introducing a small fraction of vacancies one
can expect the formation of a quadrupolar supersolid in
the strongly interacting regime [37], which is similar to the
vacancy-induced Andreev-Lifshitz mechanism [76–80].

It is important to find the properties at the quantum phase
transition point. In the crystal phase, the value of the Linde-
mann ratio is found to be equal to γ = 0.269(4). In the gas
phase, the height of the first peak in the static structure factor
is S(k)max = 1.6(1) and the condensate fraction is quite small,
n0/n = 0.031(4). It is instructive to confront the values at the

TABLE I. Critical values at the gas-solid phase transition in
different physical systems: gas parameter na2

s , Lindemann ratio γ

in crystal phase, the height of the first peak in the structure factor
S(k)max in the gas phase, and the condensate fraction n0/n in the gas
phase.

Pair interaction na2
s γ S(k)max n0/n

Quadrupoles 1.05 0.269(4) 1.6(1) 0.031(4)
Hard disks [75] 0.33 0.279(1) 1.54(2) –
Helium [81,82] – 0.254(2) 1.7(1) 0.04(1)
Dipoles [20] 2900 0.230(6) 1.7(1) 0.017(6)
Yukawa [83] – 0.235(15) – –
Coulomb [84] – 0.24(1) – –

critical point with ones obtained in different 2D bosonic sys-
tems. Table I summarizes what is known in the literature for
other interactions: short-range (hard disks, helium, Yukawa),
extended-range (dipoles), and long-range (Coulomb) ones.
The value of the Lindemann ratio is very similar across all
systems, even if the interactions are very different and the
order of gas and crystal phases is inverted in the Coulomb
case. Also we find that S(k)max and the condensate fraction
n0/n are rather similar in the gas phase at the transition point.
Moreover, our results on the calculation of the condensate
fraction of the 2D gas of quadrupoles at T = 0 are in the
quantitative agreement with quantum-field HDs [74].

As a possible realization of our model, we analyze typ-
ical experimental schemes shown in Fig. 5. We assume a
semiconductor structure consisting of three layers separated
by barriers. In configuration Fig. 5(a), a quadrupole can be
formed out of two holes in the middle layers and two elec-
trons, each one in the outer layer. Pauli exclusion principle
does not allow the holes to be close and their density profile
forms a ring. Assuming a thin ring of radius R and a total
charge −2q in the central layer and two point-like +q charges
in the lateral layers, the quadrupole moment is equal to

Q = 3qD2
√

1 + 2α(α − 1)/3, (7)

where D is the distance between the centers of the central
and lateral layers, α = R2/D2, and the hole charge is q =
e > 0. Configuration in Fig. 5(b) is obtained for the spec-
ular case with the inverted charges, q = −e. Configuration

FIG. 5. Schematic illustration of possible experimental
realizations.
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in Fig. 5(c) assumes only a single charge 2q = −e in the
central layer [α = 0 in Eq. (7)] and half-charges q = +e/2
in the outer layers. The physical realizations are based on
ZnSe quantum wells [85] with interlayer separation D = 6
nm and MoS2/MoTe2 monolayers [86,87] with D = 1.667
nm, according to the schemes shown in Fig. 5. The critical
densities of the gas-solid phase transition are realistic and
correspond to Fig. 5(a) nc = 1.8 × 1011 cm−2, Fig. 5(b) nc =
2.6 × 1012 cm−2, and Fig. 5(c) nc = 1.3 × 1013 cm−2.

In conclusion, we have obtained the ground-state phase
diagram of 2D bosons interacting via quadrupolar potential at
zero temperature. Energetic, structural, and coherent proper-
ties have been studied in the vicinity of the gas-solid quantum
phase transition. We have demonstrated that the excitation
spectrum experiences a strong rotonization in the gas phase
close to the critical density. We have found an agreement with
quantum HD calculations for the calculation of the condensate
fraction. Our predictions can be probed in experiments with
TMD systems and ultracold gases, where the technique for

the observation of roton phenomena recently has been devel-
oped. Promising candidates for the creation of such phases are
quadrupolar excitons in TMD layer structures [54,61], where
the quantum phase transition for the two-component systems
has been observed [61], and Rydberg atomic ensembles.
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