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Dynamical torque from Shiba states in s-wave superconductors
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Magnetic impurities inserted in an s-wave superconductor give rise to spin-polarized in-gap states called Shiba
states. We study the back-action of these induced states on the dynamics of the classical moments. We show that
the Shiba state pertains to both reactive and dissipative torques acting on the precessing classical spin that can
be detected through ferromagnetic resonance measurements. Moreover, we highlight the influence of the bulk
states as well as the effect of the finite linewidth of the Shiba state on the magnetization dynamics. Finally, we
demonstrate that the torques are a direct measure of the even and odd frequency triplet pairings generated by
the dynamics of the magnetic impurity. Our approach offers noninvasive alternative to the scanning tunneling
microscopy techniques used to probe the Shiba states.

DOI: 10.1103/PhysRevB.103.L121401

Introduction. The quest for Majorana fermions is driven
by their promise as a building block for a fault tolerant
topological quantum computer [1]. Magnetic impurities in
superconductors have been a prime area of research for re-
alizing topological superconductors that can host such exotic
quasiparticles [2–22]. The elementary unit for such a chain is
a single magnetic impurity inserted in an s-wave superconduc-
tor, which can bind spin polarized subgap energy electrons in
the so-called Shiba states [23].

The Shiba impurity states have been well studied theoret-
ically [23–25] and experimentally revealed by the scanning
tunneling microscopy (STM) technique. Unfortunately, such
systems are hard to tune once in the superconductor, which
drastically reduces the ability to explore various topological
regimes. Driving the impurities, however, can result in the
ability to achieve such a feat dynamically where the pre-
cessing frequency acts as the knob to control the topological
transition [21]. Spin pumping and spin transfer torques in
ferromagnets are just a few phenomena that pertain to mag-
netization dynamics [26,27] and which are staple dynamical
methods for manipulating, transporting, and detecting spins
in magnetic systems. Recently, it has been shown theoretically
that such dynamics result in controllable shifts in the Shiba en-
ergies that show up as features in the differential conductance
in transport measurements [28]. Thus, dynamical magnetic
impurities are a promising platform for engineering topologi-
cal superconductor [21]. In this paper, we take a step forward
and investigate a single time-dependent magnetic impurity of
size S in an s-wave superconductor (SC), in particular the
back-action effects of the “stirred” electrons in the SC on
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the spin dynamics. In the adiabatic limit, we find a universal
reactive torque pertaining to the Shiba state that is geometrical
in nature:

τR(t ) = (nS − 1/2) Fs[n(t )] ṅ(t ) , (1)

where nS is the occupation of the Shiba state, Fs[n(t )] = SB ·
n(t ) = 1/2 is the radial Berry curvature of the Shiba state, B is
the magnetic field, and n(t ) = S(t )/S is the precessing clas-
sical spin direction. Changing nS is equivalent to effectively
changing the classical spin length as S → S − (nS − 1/2).
Berry-phase induced torques and their effects on classical
spins in normal metals have been investigated previously in
several important works [29–33]. However, the origin of the
torque in all those instances is different from that described
here pertaining to precessing spins in superconductors. In

FIG. 1. Sketch of the combined system. A classical precessing
spin (red) at angle θ with respect to the z axis is coupled via exchange
interaction to an s-wave superconductor (grey). A localized Shiba
state of size ξS is formed underneath which is spin polarized and
can act back on the classical spin precession. Both reactive (τR) and
dissipative (τD) torques are present which affect the dynamics of the
classical spin.
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Fig. 1 we show a sketch of the combined dynamical spin-SC
system, and highlight the reactive (τR) and dissipative (τD)
torques that act back on the classical spin. The rest of the
paper is dedicated to derive Eq. (1) microscopically, to take
into account a finite Shiba linewidth, which in turn leads to a
dissipative torque (τD), as well as for the effects of the bulk
(nonlocalized states in the continuum) states in the supercon-
ductor. Further, we show how these torques are a measure of
various even- and odd-frequency triplet SC pairings induced
by the dynamics.

Model Hamiltonian. The model Hamiltonian for the
dynamical system in Fig. 1, which describes both two-
dimensional (2D) and three dimensional (3D) setups, can be
written as Htot (t ) = (1/2)

∫
dr�†(r)HBdG(t )�(r) where the

Bogolioubov–de Gennes Hamiltonian reads

HBdG(t ) = H0 + Vi(t ) ,

H0 = εpτz + �τx ,

Vi(t ) = −JS(t ) · σ δ(r) , (2)

with H0 and Vi(t ) being the bare Bogolioubov–de Gennes
Hamiltonian for the s-wave superconductor and its coupling
to the classical magnetic impurity, respectively, written in
the Nambu basis �(r) = [c↑(r), c↓(r), c†

↓(r),−c†
↑(r)]T . Also,

σ = (σx, σy, σz ) and τ = (τx, τy, τz ) are the Pauli spin matri-
ces in the spin and particle hole subspace, respectively. The
spectrum of free electrons is given as εp = p2/2m − μ, where
m, p, and μ are the electron mass, momentum, and chem-
ical potential, respectively. � is the superconducting order
parameter and J defines the coupling between the classical
spin S(t ) = S(sin θ cos φ, sin θ sin φ, cos θ ) and the electrons
in the superconductor. In the following, we assume circular
precession, i.e., φ = �t , with � and θ representing the preces-
sion frequency and angle the classical spin makes with z axis,
respectively. The magnetic impurity generates also a scalar
potential but, for simplicity, we neglect such a contribution in
this work. The dynamics of the classical spin is described by
the Landau-Lifshitz-Gilbert (LLG) equation:

Ṡ(t ) = −S(t ) × (γ B(t ) − 〈σ(t )〉 + βṠ(t )) , (3)

where γ and β are the gyromagnetic coupling and the Gilbert
damping, respectively, and τR(t ) = JS(t ) × 〈σ(t )〉 is the total
torque acting on the classical spin by the superconductor, with
〈σ(t )〉 being the spin expectation value in the superconductor
at the position of the impurity in the steady state. This term can
change both the resonance frequency and the Gilbert damp-
ing. Note that in typical setups B(t ) = B0z + B⊥(t ), with
|B⊥(t )| � B0 (small angle precession) and γ B0 ≡ �0 defines
the resonance frequency in the absence of the Shiba states.

Rotating frame description. It is convenient to analyze the
dynamics by using the rotating wave description approach.
Due to the circular precession of the magnetic impurity, the
symmetry of the system allows us to perform a unitary trans-
formation U (t ) that renders the problem fully static. Hence,
we can write �(r, t ) = U (t )�(r)e−iEt such that the time in-
dependent Schrodinger equation can be written as Hrot�(r) =
E�(r) with Hrot = U †(t )Htot (t )U (t ) + iU̇ †(t )U (t ) or

Hrot = Htot (0) − bσz , (4)

where U (t ) = exp (−ibσzt ) and b = �/2 is the fictitious mag-
netic field perpendicular to the plane of the superconductor.

In the absence of precession, a magnetic impurity in an
s-wave superconductor gives rise to a Shiba state within
the superconducting gap at energy, ES = �(1 − α2)/(1 + α2)
and α = πν0JS is the dimensionless impurity strength in
terms of the normal phase density of states ν0. For finite
precession of the impurity, the coherence peaks split due
to the fictitious magnetic field, therefore it becomes easier
to break the Cooper pair and thus lower the energy of the
excitation.

When the impurity spin precesses, a general solution
to the eigenvalue problem has a complicated form [see
the Supplemental Material (SM) [34–40] for details ],
but in the deep Shiba limit, α ≈ 1 and in the adia-
batic regime, b/� � 1, the effective Shiba energy acquires
the simple expression E ′

S ≈ ES − b cos θ in leading or-
der in b/�. The corresponding wave function is |�S〉 ≈
|�0

S〉 + (X/2) sin θ |�1
S〉, where |�0

S〉 = [cos (θ/2), sin (θ/2),
cos (θ/2), sin (θ/2)]T and |�1

S〉 = [sin (θ/2),− cos (θ/2),
sin (θ/2),− cos (θ/2)]T scaled up to a normalization fac-
tor 1/

√
N where N = (1 + α2)2/(2πν0α�) [34], and X =

b
�

(1+α2 )2

4α2 � 1. The dynamics induces a coupling between the
static Shiba state to its spin partner in the continuum. Con-
sidering either the electron or hole component, the result can
be interpreted in the context of an adiabatically driven spin
1/2 particle in an effective magnetic field Beff = b/X . The
average spin at the site of the impurity pertaining to the Shiba
state can be calculated from the above renormalized wave
functions |�S〉 in leading order in b/�, and accounting for
their occupation [34]:

〈σS (t )〉 ≈ 2nS − 1

N
[(1 − X cos θ )n(t ) + X z] , (5)

where nS ≡ nS (b, θ ) is the occupation number for the Shiba
state which itself can depend on the driving. The misalignment
of the Shiba state spin and the classical moment is due to the
competition between the local exchange field and the ficti-
tious global magnetic field acting along the z direction. Using
Eq. (5), the universal torque can be evaluated as presented
in Eq. (1), with Fs[n(t )] = 1/2 corresponding to the Berry
curvature of the effective spin 1/2. However, this contribution
is due to the purely isolated Shiba state in the absence of any
relaxation channels. To account for the full out-of-equilibrium
properties, including the bulk states and to account for the
various dissipation effects, in the following we analyze the
dynamical problem by employing the Green’s function (GF)
technique.

GF approach. The bare retarded GF of the superconductor
in the rotating frame is

G̃0(ω) = −πν0

2

∑
σ=±1

ω + σb + �τx√
�2 − (ω + σb)2

(1 + σσz ) , (6)

where ω = ω + i0+ and σ = +1(−1) for ↑ (↓). The coupling
to the impurity spin in the rotating frame can be accounted
for via the Dyson’s equation that relates the full GF to the
bare one, or [G̃R(ω)]−1 = G̃−1

0 (ω) − Vi(0) + i�. Here, � is a
phenomenological Dynes broadening added to the self-energy
that accounts for the relaxation processes in the superconduc-
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tor. That, in turn, allows us to write

G̃R(ω) = πν0

D(ω, α, b, θ )
M(ω, α, b, θ ) , (7)

where
M(ω, α, b, θ ) = M0 + M1 · σ + τx ⊗ (M2 + M3 · σ )

is a 4 × 4 matrix and D(ω, α, b, θ ) = ω1ω2(1 + α4 −
2α2 cos2 θ ) − 2α cos θ (1 − α2)[(b + ω)ω2 + (b − ω)ω1],
where ω1 =

√
�2 − (ω + b)2 and ω2 =

√
�2 − (ω − b)2.

The full Shiba state energy is found from the solutions
of D(ω, α, b, θ ) = 0 [34]. In the absence of precession,
the lesser GF, G̃<(ω) = nF (ω)[G̃A(ω) − G̃R(ω)] where
nF (ω) = [exp(βω) + 1]−1 is the Fermi distribution function
with β = 1/kBT , kB being the Boltzmann constant and
T is the temperature. The advanced GF instead satisfies
G̃A(ω) = [G̃R(ω)]†. In this work, we are not considering the
microscopic mechanisms behind �, but rather focus on its
manifestations on the ferromagnetic resonance (FMR) signal.
For finite precession and in the rotating frame the fictitious
magnetic field b leads to a spin dependent shift in the Fermi
distribution function and is no longer an identity operator:

ñF ≡ ñF (ω, b) = f0(ω, b) + fs(ω, b)σz , (8)

where f0,s(ω, b) = [nF (ω + b) ± nF (ω − b)]/2. Note that
ñF (ω, b) does not commute with G̃R(ω), and the lesser GF
is found as Ref. [35] (also Ref. [34]):

G̃<(ω) = ñF G̃A
S − G̃R

S ñF + G̃R
S (ViñF − ñFVi )G̃

A
S . (9)

The instantaneous spin expectation value at the position of the
impurity in the rotating frame is

〈σ̃(0)〉 = −i

2π

∫ ∞

−∞
dω Tr

[(
σ ⊗ 1 + τz

2

)
G̃<(ω)

]
, (10)

which contains both the in-gap (Shiba) and the bulk (con-
tinuum of states) contributions, respectively. Here, the (1 +
τz )/2 term is introduced in order to account for only the
electron components. For a static impurity spin, the imaginary
part of the integrand in Eq. (10) is a Lorentzian function
located at the Shiba energies and the expectation value of the
spins is nonzero for a finite Shiba linewidth. The contribution
to 〈σ̃(0)〉 is only due to the Shiba states and it points along
the classical spin direction resulting in zero net torque in the
absence of precession, as expected. For the dynamic case, the
spin expectation value has contribution from both the Shiba
and the bulk states, as discussed below.

Effect of the Shiba states. The in-gap Shiba contribution
stems from the range of integration ω ∈ [−� + b,� − b] in
Eq. (10). While later on we will evaluate this term fully nu-
merically, let us next consider the deep Shiba limit [21,36,41]
and b/� � 1 so that these states are well separated from
the bulk. As mentioned before, the average spin of the Shiba
state for precessing case is no longer along the classical spin
direction n [34] and hence, a finite torque acts on the clas-
sical spin due to this deviation which in turn will affect its
dynamics. After lengthy but straightforward calculations, we
find compact analytical expressions for the spin expectations
values that pertain to the reactive and dissipative torques,
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FIG. 2. Variation of the reactive and dissipative torques. Main:
full Shiba τS,R ) (blue solid line), approximate Shiba τa,R (red dotted
line) and total τR (black dashed line) reactive torques, respectively,
as a function of b, α, �, and θ [shown in (a), (b), (c), and (d ),
respectively]. We assumed α = 0.9 [(a), (c), and (d )], θ = π/6 [(a),
(b), and (c)], � = 0.01 [(a), (b), and (d )], and b = 0.1 [(b), (c), and
(d )]. The insets in the plots show the dependence of the full τD (full
magenta) and approximate τa,D (dotted green) dissipative torques,
respectively, on the corresponding parameters, with the other values
being the same as for the main plots.

respectively, and at T → 0:

〈σ̃a,R〉 ≈ −b(n+ + n− cos θ ); 〈σ̃a,D〉 ≈ �S n− , (11)

n± = 1

2π

∑
s=±1

sp arctan

(
E ′

S + sb

�S

)
, (12)

where �S = (2/N ) � is the effective Shiba linewidth and p =
0(1) for n+(−). Equations (11) supplemented with the plots in
Fig. 2 are the main findings of this work. In the rotating frame,
we can write the torque stemming from the Shiba state only as

τS =〈σ̃a,R〉n × z + 〈σ̃a,D〉n × (z × n) , (13)

where the first (second) term corresponds to the reactive (dis-
sipative) torque τS,R (τS,D). We see that both the reactive and
dissipative torques vanish for either b = 0 or θ = 0, π , as ex-
pected. Moreover, the reactive torque can be casted in the form
shown in Eq. (5), by identifying nS ≡ 1/2 − (n+ + n− cos θ )
as the occupation number of the Shiba state (see the SM).

A few comments are in order. In order to extract the dis-
sipative torque, we accounted for the linewidth � not only in
the denominator (that reflects the Shiba state lifetime through
�S), but also in the numerator M0 and M. Our expansion goes
beyond the effective Shiba approximations discussed in, for
example, Ref. [36], where they neglect contributions of � in
the numerator, and which would naively lead to a vanishing
dissipative torque. Our theory shows, we believe, one of the
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first instances where such an effective approach is not suffi-
cient for the case of Shiba states in superconductors.

Bulk effects. The above torques account only for the in-
gap contributions stemming from the Shiba poles, while the
full average spin value at the impurity can be evaluated only
numerically. Interestingly, in the general case, the integrand in
Eq. (10) is nonzero even when � = 0 for |ω| > � − b. Hence,
the precession of the impurity can result in a finite contribu-
tion of the bulk states to the dynamical torques, absent in the
static case. The total spin expectation value can be written as
〈σ̃〉 = 〈σ̃B〉 + 〈σ̃S〉 (and similarly for the torques), denoting
a sum of the bulk and Shiba contributions, respectively. In
Fig. 2 we show the total reactive torque (τR) and the Shiba
parts of the reactive torque (τS,R) as a function of various
parameters, such as b, α, �, and θ , calculated numerically. The
difference between τR and τS,R accounts for the bulk contribu-
tion to the reactive torque. The plot of the dissipative torque
(τD), which originates only from the Shiba state, is shown in
the insets of Fig. 2. To compare the full numerics with the
analytical results describing the Shiba contribution, we also
plot the reactive (τa,R) and dissipative torques (τa,D) calculated
from Eq. (11) and shown by the dotted line in Fig. 2. We
see a very good agreement between the analytic expressions
and the Shiba contribution obtained from the numerics for
small b [Fig. 2(a)] and in the deep Shiba limit [Fig. 2(b)].
Furthermore, in this limit, τR and τS,R coincide, proving that
the Shiba state is responsible for the reactive torque, while
the bulk contribution tends to zero. Moving away from the
deep Shiba limit, there is a finite bulk contribution to the
reactive torque [see Fig. 2(b)]. Figures 2(c) and 2(d) show
the behavior of the dynamical torques as a function of the
Dynes broadening factor � and θ , respectively. By increasing
� the difference between τR from τS,R increases also. Note that
since τD ∝ n × ṅ is always positive, as per the LLG equation
given in Eq. (3) it corresponds to a damping like/dissipation
torque. From Fig. 2(b), τD peaks at α corresponding to E ′

S = 0
for the given parameters as can be seen from the analytic
expression Eq. (11). Experimentally, that would result in a
strong enhancement of the FMR linewidth.

Unconventional pairing. The occurrence of odd frequency
superconductivity has been recently discussed for a static
impurity [42,43]. Here we show that spin precession leads to
generation of unconventional pairing that is directly related
to the experimentally accessible dynamical torques. Similar
to Ref. [43], we consider the adiabatic deep Shiba limit and
expansion of the numerator and denominator of G̃R

±(ω) in
zeroth and first order in �, respectively, we can write

G̃R
±(ω) ≈ πν0(τ0 ± τx )

ω ∓ E ′
S + i�S

(M0 ± M · σ) , (14)

where M0 [M = (Mx, 0, Mz )] is a scalar (vector) that depends
on the precession frequency b, angle θ and impurity strength
α. Equation (14) is the second main result of our work. In this
limit, the anomalous part of the retarded GF in the rotating
frame, F̃ (ω), corresponds to the term ∝ τx in Eq. (14) (see the
SM). The reactive torque for a given frequency ω originating
from the Shiba state (which when integrated gives the total

torque) can then be written in terms of the anomalous pairing
as follows:

τS,R(ω) = Im
[
F̃o(ω) fs(ω) sin θ − F̃e(ω) f o

0 (ω)
]
, (15)

where the even and odd frequency triplet pairing compo-
nents above are defined as Fo(ω) = ∑

σ F o
σ σ̄ (ω), Fe(ω) =∑

σ F e
σσ (ω) with F̃ e/o

σσ ′ (ω) = F̃σσ ′ (ω) ± F̃ ∗
σσ ′ (−ω). Morerover,

f o
0 (ω) = f0(ω) − 1/2 while fs(ω) is even under ω → −ω.

As seen from Eq. (15), the reactive torque is generated by
two types of pairing: (i) a b dependent induced triplet pairing
and (ii) an odd frequency pairing term independent of b (in
leading order in b). Measuring the reactive torque experimen-
tally through FMR can act as a probe to such unconventional
pairing. Furthermore, when the Shiba state is completely filled
or empty ( fs = 0), a finite reactive torque establishes the
presence of precession induced triplet superconducting pair-
ing. The total reactive torque can be obtained by integrating
over ω. Such dynamical generation of triplet pairing and its
connection to the torques can be utilized to both manipulate
and detect the topological phase diagram of a chain of Shiba
impurities and eventually of the emergent Majorana fermions
by standard spintronic techniques [44]. Nevertheless, such a
study is beyond the scope of this paper and it is left for future
work.

Finally, let us give some estimates for the possible FMR
frequency shift δ�r ∼ �0/(4S + 1) of a spin S impurity (de-
tails in the SM), where �0 is the bare Larmor frequency.
For example, considering the experimental system of Moire
patterns of adsorbates on a conventional SC (Pb) with SC gap
� ≈ 3 meV and S = 1, described in Ref. [45], δ�r = 20 GHz
for �0 = 100 GHz < �. Similarly, for an impurity spin S =
5/2 corresponding to the transition metals [46], δ�r ≈ 9 GHz,
which is within the current experimental resolution [47].

Conclusion and outlook. In conclusion, we have inves-
tigated the dynamical torques acting on a classical spin
S precessing in an s-wave superconductor. We found that
the torques originate both from the Shiba and the bulk
states, with the former contribution having a geometrical
(Berry-phase) origin that shifts the FMR frequency. Us-
ing various theoretical methods, we showed that a finite
linewidth of the Shiba state results in an extra damping of
the precession of the classical spin. Finally, we showed that
classical spin precession generates unconventional supercon-
ducting pairings which is directly reflected into the dynamical
torques. Our results offer a noninvasive alternative to the usual
STM techniques to address and manipulate the Shiba states,
similarly to atomic spins manipulation on metallic substrates
[48,49]. Moreover, we expect our findings to be relevant for
arrays of coupled dynamical magnetic impurities in supercon-
ductors that can harbor exotic Majorana fermionic states.
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