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Fractional edge reconstruction in integer quantum Hall phases
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Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by
the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying
electronic excitations. In the presence of a smooth confining potential it was hitherto believed that this picture
may only be partially modified by the appearance of additional counterpropagating integer-charge modes. Here,
we demonstrate the breakdown of this paradigm: The system favors the formation of edge modes supporting
fractional excitations. This accounts for previous observations, and leads to additional predictions amenable to
experimental tests.
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Introduction. Edge modes are responsible for many of
the exciting properties of quantum Hall (QH) states [1]:
While the bulk of a QH state is gapped, the edge supports
one-dimensional gapless chiral modes [2]. Although several
transport properties of these modes are universal and deter-
mined by the topological invariants characterizing the bulk
state, their detailed structure depends on the interplay between
the edge confining potential, electron-electron interaction, and
disorder-induced backscattering. As the confining potential
is made less steep, the chiral edges of integer [3–8] and
fractional [9–20] QH phases and the helical edges of time-
reversal-invariant topological insulators [21] may undergo a
quantum phase transition (or “edge reconstruction”), while
the bulk state remains untouched. Edge reconstruction may be
driven by charging or exchange effects and leads to a change
in the position, ordering, number, and/or nature of the edge
modes.

Arguably the simplest example is provided by the edge
of the ν = 1 QH state. When confined by a sharp potential,
this state supports a single gapless chiral integer mode with
charge e∗ = 1; the electronic density steeply falls from its
bulk value to zero at the edge. Smoothening the confining po-
tential and accounting for the incompressibility of QH states
leads to the formation of an outer, finite density reconstructed
strip. Employing a self-consistent Hartree-Fock (HF) scheme,
Chamon and Wen [5] found that this additional strip can be
described as a ν = 1 QH state [Fig. 1(a)]. Such a state allows
the local density to assume an integer value, leading to a
smooth variation of the coarse-grained density from its bulk
value to zero. Reconstruction introduces an additional pair of
counterpropagating gapless chiral modes at the edge. The HF
approximation is limited to Slater-determinant states, entail-
ing these to be integer modes (e∗ = 1). Exact diagonalization
of the ν = 1 phase [5] (and of fractional phases [15–18]) is
consistent with the expected picture, but is limited to very
small systems, rendering it hard to confirm the precise filling
factor of the side strip or the nature of edge modes.

Recent transport experiments on the ν = 1 state [22,23]
have led to some surprising observations regarding the edge
structure. Exciting the ν = 1 edge at a quantum point contact
(QPC), Ref. [22] observed a flow of energy but not charge
upstream from the QPC, possibly indicating the presence of
upstream neutral modes. Reference [23] has studied the in-
terference of the edge modes in an electronic Mach-Zehnder
interferometer. As the bulk filling factor is reduced from 2
to less than 1, reduction in the visibility of the interference
pattern has been observed, with full suppression for ν � 1.
This is another indication of the presence of upstream neutral
modes [24]. However, it is inconsistent with Chamon and
Wen’s picture of only integer-charge modes, which can lead
to upstream charge propagation, but not to upstream neutral
modes. Reference [23] also found a fractional conductance
plateau with g = 1/3 × e2/h by partially pinching off a QPC
in the ν = 1 bulk state. This too is incompatible with the edge
structure of Fig. 1(a). To cap it all, the conductance plateau ob-
served was accompanied by shot noise with a quantized Fano
factor 1, which seems to suggest the edge modes do possess
an integer charge. Fractional modes were also observed at the
ν = 1 edge through direct imaging of the local density [25,26]
as well as in recent transport experiments [27].

Here, we propose another picture of the reconstructed
edge of the ν = 1 phase, and show that it accounts for all
these seemingly contradictory observations. We establish that
reconstruction may introduce a different type of counter-
propagating modes, namely fractionally charged (e∗ = 1/3)
modes. This is the case when the strip of electrons separated
at the edge forms a ν = 1/3 Laughlin state [Fig. 1(b)] in-
stead of the commonly assumed ν = 1 state (such an edge
structure was first suggested in Ref. [23]). To go beyond
the constraints of the HF approximation [which imply an
integer (0 or 1) occupation of each single-particle state],
we follow the approach by Meir [12] and treat the two
edge configurations depicted in Fig. 1 as variational states,
and compare their respective energies for different strip
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FIG. 1. Schematic representation of two possible configurations
at the reconstructed edge of the ν = 1 state. Letting the confining
potential become smoother, NS electrons may separate from the bulk
by LS guiding centers, forming a strip of (a) a ν = 1 state [5] or (b) a
ν = 1

3 Laughlin state.

size (NS) and separation (LS) as a function of the slope
of the confining potential. We find that for smooth slopes
the fractionally reconstructed edge [Fig. 1(b)] is energeti-
cally favorable. Our analysis then demonstrates that fractional
edge reconstruction may be much more robust than integer
reconstruction.

The intricate edge structure involving a downstream e∗ =
1 mode along with a pair of counterpropagating e∗ = 1/3
modes has several experimental consequences. First, with
such an edge structure the two-terminal (electrical) conduc-
tance would vary from g2T = e2/h in a long sample (with
full edge equilibration) to g2T = 5/3 × e2/h in a short sample
(with no equilibration) [28,29]. This would be a smoking
gun signature of the edge structure proposed here. Second,
in the presence of disorder-induced tunneling and intermode
interactions, the counterpropagating modes e∗ = 1 and 1/3
are renormalized to two effective modes of charge e∗

↑ and
e∗
↓ [13,14,28] (here, ↑/↓ denote the upstream/downstream

modes). When biased, the upstream mode can carry a heat
flow, which, in the particularly interesting case of e∗

↑ = 0 and
e∗
↓ = 2/3, may appear without an accompanying upstream

charge flow. Such neutral modes have been observed in hole-
conjugate QH states [22,30–34]. Bias of the neutral modes
can cause stochastic noise in the charge modes through the
generation of quasihole-quasiparticle pairs [31,35–37]. Be-
low we show that this could account for the aforementioned
Fano factor 1 [23]. Moreover, neutral modes may also lead to
suppression of interference in Mach-Zehnder interferometers
[24], in line with existing experiments.

Basic setup. We consider a ν = 1 state on a disk. In
the symmetric gauge, e �A/h̄ = (−y/2�2, x/2�2), the wave
function of single-particle states in the lowest Landau
level are φm(�r ) = (r/�)me−imθr e−( r

2�
)2
/
√

2m+1πm!�2, where
(r, θr ) are the polar components of �r in the x-y plane;
φm is an angular momentum eigenfunction with eigen-
value h̄m, centered at r = √

2m� where � is the magnetic
length. Assuming spin-polarized electrons and neglecting
higher Landau levels, the Hamiltonian is H = Hee + Hc,
where Hee is the interaction part while Hc is a circu-
larly symmetric one-body confining potential. Denoting Ec =
e2/ε0�, Hee = (Ec/2)

∑
m1,m2,n

V ee
m1m2;nc†

m1+nc†
m2

cm2+ncm1 and
Hc = Ec

∑
m V c

mc†
mcm, where V ee is the two-body Coulomb

matrix element and V c is the matrix element of the
confining potential. The total angular momentum L is
a good quantum number. The edge confining potential

reads [12]

Vc(r) =
⎧⎨
⎩

0, r < r0 − w�
2 ,

s
w�

(
r − r0 + w�

2

)
, r0 − w�

2 < r < r0 + w�
2 ,

s, r > r0 + w�
2 ,

(1)

where r0 is the radius of a compact ν = 1 state. The dimen-
sionless parameter s sets the overall height of the potential,
which we henceforth fix to s = 7. The steepness of the poten-
tial is controlled by the dimensionless width w.

We consider two classes of variational states (shown
in Fig. 1), corresponding to an integer [Chamon-Wen [5],
Fig. 1(a)] and a fractional [Fig. 1(b)] reconstructed edge. Both
are controlled by two parameters: the total occupancy NS of
the reconstructed edge strip, and the number LS of empty
orbitals separating it from the bulk. The latter contains NB

electrons, such that the total number of electrons NS + NB is
fixed (to be 100). The Chamon-Wen family of states includes
the compact edge configuration (NS = 0 = LS) which is the
ground state for sharp confining potentials. For smoother con-
fining potentials, the lowest energy state is expected to be at
nonzero NS and LS . In this case, a comparison of the energies
of the states in the two classes determines whether fractionally
charged modes could appear at the edge of the ν = 1 phase.

Variational ansatz: Integer edges. Figure 1(a) represents
a Slater-determinant state of NS + NB electrons. It can be
written as |NB, 0〉 ⊗ |NS, NB + LS〉, where

|N, L〉 = c†
L+N−1 c†

L+N−2 . . . c†
L+1 c†

L|0〉. (2)

The energy and angular momentum of each state in the integer
class of reconstructions can be found easily once the Coulomb
matrix elements are known [38].

Variational ansatz: Fractional edges. Figure 1(b) rep-
resents the product state of a Slater determinant (|NB, 0〉)
with an annulus of the ν = 1/3 Laughlin state, contain-
ing NS electrons starting at the guiding center m = NB +
LS . The (unnormalized) wave function corresponding to the
annulus is

NS∏
i=1

[
zNB+LS

i

][∏
i< j

(zi − z j )
3

]
e− 1

4

∑
i |zi|2 , (3)

where zn = xn − iyn is the coordinate of the nth particle. The
energy and angular momentum of states in this class involve
the Coulomb energy and average occupations of the Laughlin
state [Eq. (3)]. We evaluate these using standard classical
Monte Carlo techniques [38].

Results. Figure 2 shows the total energies and the ground
state densities for the two class of variational states at differ-
ent confining potentials. In Figs. 2(a) and 2(b) the blue dots
correspond to integer edges while the red dots correspond
to the fractional edge states. For a sharp confining potential
[w < 10, Fig. 2(a)] the lowest energy state is the one with
the minimal angular momentum (in this case 4950h̄). This
corresponds to the unreconstructed ν = 1 state with a single
chiral edge mode. Figure 2(c) shows the electronic density in
this case, which drops monotonically from 1/2π�2 to 0.

For smoother potentials [w > 10, Fig. 2(b)] the lowest
energy state has a much larger angular momentum (5256h̄
for w = 10.2 with NS = 18 and LS = 0) than the compact
state. Correspondingly, Fig. 2(d) shows that the density varies
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FIG. 2. Variational analysis for NS + NB = 100 and s = 7. (a),
(b) The energy of the two variational states as a function of the total
angular momentum at (a) w = 6.0 and (b) w = 10.2. The energy of
the unreconstructed state has been subtracted to make comparison
easier. The blue (red) dots correspond to states with ν = 1 (ν = 1

3 )
reconstruction at the edge. For sharp edges (w < 10) the ground
state is the one with minimum angular momentum, implying that
LS = 0, hence no edge reconstruction. In this case, we expect a single
downstream edge mode supporting e∗ = 1 quasiparticles. For smooth
edges (w > 10) the ground state shifts to a higher angular momen-
tum sector implying that the electronic disk expands and the edge
undergoes reconstruction. (b) shows that a fractional reconstruction
is energetically favorable to an integer reconstruction. This is true for
all w > 10. Thus the reconstructed edge supports counterpropagat-
ing modes with fractional charges. (c) and (d) depict the electronic
densities of the ground state at (c) w = 6.0 and (d) w = 10.2. The
nonmonotonic variation of density at the edge is another signature of
the presence of additional emergent modes.

nonmonotonically at the edge [44]. The states with a fractional
edge are found to have a lower energy than the states with an
integer edge whenever reconstruction is favored [45]. This is
the main result of this work. We have verified that it does not
depend on the precise form of the confining potential [38]. We
now turn to discuss the experimental consequences of such a
reconstruction and compare them to the observations reported
in literature so far.

Two-terminal conductance. Let us consider the setup
shown in Fig. 3, where the edge structure is based on our
analysis of a disk geometry. The chiral modes emanating from
the source (S) are biased with respect to those emerging from
the drain (D). Due to disorder-induced intermode tunneling,
the counterpropagating chirals at each edge will equilibrate
over a typical length �eq. For a fully equilibrated edge (L 	
�eq), the two-terminal conductance is e2/h, as expected for
the ν = 1 QH state. Note that this would be the case for both
sharp and smooth edges and for both integer and fractional
reconstructions.

FIG. 3. Two-terminal transport experiment at ν = 1, with an
edge structure as calculated for a disk geometry (cf. text). The solid
(dashed) lines indicate the integer (fractional) chirals at the two edges
of the sample. The red (blue) chirals are biased (unbiased) due to the
source S (drain D). For L 
 �eq (�eq is the intermode equilibriation
length) the conductance is g = 5/3 × e2/h (3 × e2/h) for fractional
(integer) edge reconstruction [cf. Figs. 1(b) and 1(a)]. For a fully
equilibrated edge (L 	 �eq), the conductance reduces to g = e2/h in
both cases, as expected for the unreconstructed ν = 1 state.

For L 
 �eq, the detailed structure of the edge underlies the
conductance. For a sharp edge transport takes place through
a single integer chiral, hence the electric conductance would
retain the values e2/h. This is different for smooth edges. The
electric conductance is sensitive to the number as well as the
nature of the modes; with a pair of counterpropagating frac-
tional edges, the electric conductance becomes 5/3 × e2/h
[28,29]. Such an observation would uniquely identify the edge
structure proposed here [Fig. 1(b)]—a smoking gun signature
of fractional edge reconstruction [46].

Neutral modes. Consider the fractional reconstruction of
Fig. 1(b). Labeling the outermost channel as 1 and the inner-
most edge as 3 [cf. Fig. 4(a)], the low energy dynamics of the
three modes is described by three chiral bosonic fields φ j ( j =
1, 2, 3) satisfying the Kac-Moody algebra, [φ j1 (x), φ j2 (x′)] =
iπ [K−1] j1, j2 sgn(x − x′), where the K matrix is diagonal with
K1,1 = 3, K2,2 = −3, K3,3 = 1. The inner two modes are
counterpropagating charge modes of ν = 1 and ν = 1/3 type.
This is precisely the edge structure of the hole-conjugate
ν = 2/3 FQH state. Since LS is typically small [44], in the
presence of disorder-induced backscattering and interactions
the two charge modes can hybridize [Fig. 4(a)], resulting in a
downstream charged mode φc and an upstream neutral mode
φn, which are effectively decoupled at low energies [13]. This
K matrix is diagonal with K1,1 = 3, Kc,c = 1, Kn,n = −1. We
note that here the outermost mode (φ1) is kept untouched (cf.
Fig. 4).

The experimental consequences of this emergent neutral
mode are similar to the neutral modes in hole-conjugate states.
For instance, it can lead to an upstream thermal current, which
was reported in Ref. [22], accompanied by an upstream shot
noise (see below) [47,48]. The presence of the neutral mode
can also hinder observation of interference effects in Mach-
Zehnder setups [24] as reported in Ref. [23].

Fractional conductance plateau and noise. The presence of
fractionally charged chiral modes at the edge has clear exper-
imental consequences for transport measurements. Consider
for example the single QPC setup of Fig. 4(b). Here, the bulk
filling factor is ν = 1 and the current is transmitted from the
source (S1) to the drain (D1). When the QPC is fully open
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FIG. 4. (a) Renormalization of the inner two edge modes due to
interactions and disorder-induced backscattering into a downstream
charge (φc) and upstream neutral (φn) mode. Only the inner two
modes are assumed to couple, since within the variational calcula-
tion, the width of the ν = 1/3 strip increases as the edge potential
is made smoother but the separation between the ν = 1 and ν = 1/3
regions remains constant. Thus the outermost edge mode (φ1) can be
assumed to be physically separated from the inner two modes (φ2,3)
[20]. (b) A single QPC tuned to the transmission plateau t = 1/3.
The bulk on both sides of the QPC is in the ν = 1 state with a recon-
structed and renormalized edge. Solid (dashed) lines correspond to
biased (unbiased) modes.

then the conductance would be e2/h, as expected from the
bulk topological index. However, due to the edge structure
discussed above, it is also possible to pinch off the QPC, so
that only the outermost mode (φ1) is transmitted while the
inner two modes are completely reflected. In this case there
would be a fractional conductance plateau at 1/3 × e2/h while
the bulk filling factor remains 1. Such a plateau was reported
in Ref. [23].

Interestingly, although the conductance is quantized, the
system could exhibit shot noise on the conductance plateau.
Under the assumption of coherent propagation of the neutral
mode, and provided certain symmetry conditions are satisfied
[35,49], the Fano factor is quantized. Such a quantized noise
at the 1/3 conductance plateau has been reported in Ref. [23].
Below we sketch the underlying physics relying on our frac-
tionally reconstructed edge picture.

Consider the setup shown in Fig. 4(b). The source S1 on
the upper left-hand side of the QPC biases both charge modes
emanating from it with the same voltage (say V ). The current
in the two modes is I1 = V/3 × e2/h, Ic = 2V/3 × e2/h, and
the total current is thus I = I1 + Ic = V × e2/h. The current
(Ii, i = 1, c) in a given mode is related to the correspond-
ing quasiparticle density (ni) through I1 = e/3 × v1n1 and
Ic = 2e/3 × vcnc, where vi are the corresponding velocities,
implying v1n1 = vcnc. Therefore if N quasiparticles of charge
1
3 emanate from the S1 in time τ , then N quasiparticles of
charge 2

3 also emanate in the same time interval. The total
current (I) is I = e/3 × N/τ + 2e/3 × N/τ = eN/τ .

Now, on the upper right-hand side of the QPC, the out-
ermost e/3 mode is biased while the inner 2e/3 mode
is grounded, and therefore the two modes will equilibrate

through tunneling processes, which would also create exci-
tations in the neutral mode. If there were N quasiparticles
in φ1, then after equilibration with φc there would be N/3
quasiparticles left in both charged modes and 2N/3 neutral
excitations in the upstream neutral mode. These neutral exci-
tations would move to the lower right-hand side of the QPC
and decay into quasiparticle-quasihole pairs in the charge
modes. This generates stochastic noise in the charged modes
because each decay process can randomly generate either a
quasiparticle (quasihole) in the outermost (inner) mode or vice
versa. This decay process would lead to a stochastic tunneling
of N/3 electronic excitations into φc, which eventually reach
the drain D1. Similarly, on the lower left-hand side of the
QPC, a biased 2e/3 mode flows in parallel to an unbiased
e/3 mode. Their mutual equilibration would again generate
2N/3 neutral excitations. These decay on the upper left-hand
side of the QPC and generate 2N/3 excitations in the φ1 mode
entering the drain D1.

As a result of the above, the charge entering the drain in
time τ is Q = e/3 × N/3 + 2e/3 × N/3 + e/3 × ∑2N/3

i=1 ai +
2e/3 × ∑N/3

i=1 bi, where ai and bi are random variables
which take values ±1 with equal probability, and de-
scribe the noise generated in the modes due to the neutral
excitation decay described above. This implies that the av-
erage current arriving at the drain is ID = 〈Q〉/τ = eN/3 =
I/3 (consistent with a transmission of 1/3). The variance
of the charge is δQ2 = 〈Q2〉 − 〈Q〉2 = e2/9 × ∑2N/3

i=1 a2
i +

4e2/9 × ∑N/3
i=1 b2

i = 2Ne2/9 = 2e/9 × Iτ . The effective Fano
factor is Feff = δQ2/Iτ × 1/et (1 − t ). Using t = 1/3 we
obtain Feff = 1, which coincides with the observation of
Ref. [23].

Conclusions. We have studied edge reconstruction at
the boundary of ν = 1 integer quantum Hall state. Previ-
ously reported Hartree-Fock calculations show that upon
smoothening the confining potential a new strip of ν = 1
QH state is formed at the edge, introducing counterprop-
agating integer modes [5]. Going beyond the mean-field
approximation, we have performed a variational calculation,
where we have compared the above ansatz to a new one, in
which the electronic strip forms a ν = 1/3 Laughlin state.
We have found that such fractional reconstruction is always
energetically favorable, implying that fractional modes can
appear at the boundary of integer QH states. We have dis-
cussed the experimental consequences of such a fractionally
reconstructed edge, which nicely square with previous mea-
surements, and provide predictions for future experiments.
Our finding sets the stage for a future detailed investigation
of coherent as well as incoherent transport in designed ge-
ometries, implementing the idea of fractionally reconstructed
edges.
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