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Atomic forces by quantum Monte Carlo: Application to phonon dispersion calculations
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We report a successful application of the ab initio quantum Monte Carlo (QMC) framework to a phonon
dispersion calculation. A full phonon dispersion of diamond is successfully calculated at the variational Monte
Carlo (VMC) level, based on the frozen-phonon technique. The VMC-phonon dispersion is in good agreement
with the experimental results, giving renormalized harmonic optical frequencies very close to the experimental
values, and improving upon previous density functional theory estimates. Key to success for the QMC approach
is the statistical error reduction in the atomic force evaluation. We show that this can be achieved by using well
conditioned atomic basis sets and by explicitly removing the basis-set redundancy, which reduces the statistical
error of forces by up to two orders of magnitude by combining it with the so-called space-warp transformation
algorithm. This leads to affordable and accurate QMC-phonons calculations, which are up to 104 times more
efficient than a bare force treatment, and paves the way to new applications, particularly in correlated materials,
where phonons have been poorly reproduced so far.
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The accurate description of phonons in a solid is one of
the central research topics in the field of condensed matter
physics and materials science for discussing phase stabil-
ity (i.e., Gibbs-free energy), electron-phonon interaction, and
structural phase transitions of materials [1,2]. Ab initio phonon
calculations based on the Density Functional Theory (DFT)
[3,4] have been successful for many compounds, but they
often fail in strongly correlated materials. For example, DFT
calculations severely underestimate the highest frequency of
the optical phonons of graphene at the K point [5,6], because
the electron-electron correlation is not taken into account with
sufficient accuracy. Another example is the elemental cerium,
whose phonon dispersions measured by neutron scattering
strongly mismatch with the calculated DFT Perdew-Burke-
Ernzerhof (DFT-PBE) ones [7]. Interestingly, such failure
was also seen in a high Tc cuprate superconductor [8]. Some
effort has been made to include correlation in phonon calcu-
lations in the DFT + Hubbard U (DFT+U) framework [9]
and also within the Dynamical Mean-Field Theory (DMFT)
framework [10,11]. In both cases, this requires modeling
correlations by an empirical parameter, though physically
motivated (i.e., the Hubbard U ). Indeed, a genuine ab initio
framework applicable to strongly correlated materials without
any empirical parameters remains, so far, a very important
theoretical challenge.

The ab initio quantum Monte Carlo (QMC) framework,
including variational quantum Monte Carlo (VMC) and the
diffusion quantum Monte Carlo (DMC) schemes, is among
the state-of-art numerical methods to obtain highly accurate
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many-body wave functions [12] and cope with the electron
correlation more rigorously than DFT. It has been successfully
applied to challenging materials that DFT cannot tackle, such
as cuprates [13], iron arsenides [14], and graphene [13,15].
So far, unfortunately, almost all QMC applications are mainly
based on energy and its first derivative (i.e., atomic force)
calculations. Indeed, it is at present an open problem how to
evaluate, with an affordable computational effort, second and
higher-order derivatives, which are essential for computing
various physical properties.

There are three routes to compute the second derivatives
(i.e., ∂2E

∂Rα∂Rβ
), which are needed for evaluating harmonic

phonon properties by ab initio calculations, i.e., (i) potential
energy surface (PES) fitting, (ii) finite difference expression
based on atomic force evaluations, and (iii) direct evaluation
of second derivatives. All of the above attempts have been
successful for isolated molecular systems [16–19]. On the
other hand, for solids, only strategy (i) has been successful
so far within the QMC framework. For example, Maezono
et al. calculated Raman frequencies of diamond (phonons at
q = � point) [20]. However, QMC-phonon calculations of
solids have been limited to a single high-symmetry q point.
To the best of our knowledge, the full (q-resolved) phonon
dispersion has been unaccessible so far at both VMC and
DMC levels.

In this paper, we report a successful phonon dispersion
calculation of diamond at the VMC level by adopting strategy
(ii), the so-called frozen phonon technique [4]. The key to
success is to reduce the statistical error of atomic forces.
We found that removing the nearly linear dependency of the
basis set used for the trial wave function parametrization [21]
dramatically lowers the statistical error of forces. Its decrease
reaches the order of ∼ × 10−2, which corresponds to a speed
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up of ∼104 times in a VMC computation. This drastic re-
duction enables us to construct a dynamical matrix within
an affordable computational time, and to eventually apply
VMC-phonon calculations to new, interesting materials from
first principles.

All VMC and lattice regularized diffusion Monte Carlo
(LRDMC) [29,30] calculations in this study were performed
by the TURBORVB [31,32] SISSA quantum Monte Carlo
package. We employed the Jastrow-Slater determinant (JSD)
ansatz, i.e, � = �SD × exp J, where �SD and J are the Slater
determinant and Jastrow terms, respectively. The Slater de-
terminant part is expressed in terms of molecular orbitals
φk (r) = ∑L

i=1 ci,kψi(r) expanded in a periodized Gaussian
basis set {ψi}. The valence triple zeta (VTZ) basis set ac-
companying an energy-consistent pseudopotential developed
by Burkatzki et al. [33] was employed for the primitive
Gaussian atomic orbitals (Table S-I [34]). The coefficients of
atomic orbitals (i.e., ci,k) were obtained by a DFT calcula-
tion with the LDA-PZ exchange-correlation functional [35]
and were left unchanged during the VMC optimization. The
Jastrow factor was composed of inhomogeneous one-, two-,
and three-body contributions (J = J1

inh + J2 + J3) [34]. The
variational parameters in the Jastrow terms were optimized
by the stochastic reconfiguration [36] and/or the modified
linear method [32,37] implemented in TURBORVB. LRDMC
calculations were performed by the single-grid scheme [29]
with a lattice space, a = 0.2 bohr.

In this paper, we focus on diamond (Space group: Fd 3̄m)
as a proof of concept for the first example of a VMC-based
phonon dispersion calculation. 2 × 2 × 2 conventional su-
percells (256 electrons / 64 carbon atoms in a simulation
cell) were used for most calculations, while 3 × 3 × 3 con-
ventional supercells (864 electrons / 216 carbon atoms in a
simulation cell) were also used for several calculations to in-
vestigate the finite-size errors. L-twist (i.e., k = π , π , π ) was
employed for alleviating the so-called one-body finite-size
effects [20,38,39]. Dynamical matrices and the corresponding
phonon dispersions were calculated based on the frozen-
phonon technique implemented in the Phonopy module [4],
where a 0.15 bohr displacement of carbon atoms was large
enough to work with a reasonable signal/noise ratio in QMC
forces. This displacement underestimates harmonic frequen-
cies only by ∼0.1 THz, as shown in Fig. S-3 [34]. Error bars in
a phonon dispersion were estimated by the jackknife method
[40]. Phonon calculations based on DFT were performed us-
ing the QUANTUM ESPRESSO package [41] with LDA-PZ [35]
and GGA-PBE [42] exchange-correlation functionals at the
experimental lattice parameter [34]. The phonon dispersion
of diamond has already been studied using DFT calculations
by many groups so far at the theoretical [43,44] and experi-
mental [20] lattice parameters. That makes this system a very
good testbed for any new methodological implementation of
phonons calculations. As shown later, our DFT calculations
are consistent with the previous study.

Figure 1 shows the phonon dispersion obtained by our
VMC calculations using the conventional 2 × 2 × 2 diamond
supercell [49]. Observed experimental frequencies [22,24,27]
are also plotted for comparison. A phonon dispersion obtained
by the finite displacement method does not include anhar-
monic effects, which can decrease harmonic frequencies by

FIG. 1. The phonon dispersion and Raman frequencies of di-
amond calculated using a 2 × 2 × 2 conventional supercell at the
VMC level, where the anharmonic and one-body finite size correc-
tions are included. The experimental lattice parameter (i.e., 6.741
bohr [26]) was employed. The error bars were estimated by the
jackknife method. Observed experimental results are also plotted for
comparison. Experimental data are taken from Refs. [22–24,27]. The
data in Ref. [23] were digitalized using WEBPLOTDIGITIZER [28].

up to ∼5–10% for the lightest elements [50]. Therefore, for
comparison with the experimental results, anharmonic correc-
tions were added to the VMC phonon dispersion in this study.
The phonon dispersion before the correction is shown in Fig.
S-1 [34]. The anharmonic renormalizations were estimated in
this study using path integral molecular dynamics simulations
[51,52] at the DFT level with the PBE exchange-correlation
function (Fig. S-5 [34]), giving −0.411 THz, −0.177 THz,
and −0.280 THz for �, X , and L, respectively (see the
Supplementary Material for details [34]). The value at � is
consistent with a reported estimate of −17.4 cm−1 = −0.522
THz [25]. Notice that other possible sources of error were also
considered. The phonon dispersion in Fig. 1 also includes the
one-body finite size corrections that were estimated by DFT
calculations (see Fig. S-2 [34]). The two-body finite-size error
is negligible because the average density and the volume do
not change in phonon calculations. Table I shows a detailed
comparison of the highest harmonic phonon frequencies at
three q points, i.e., � = (0, 0, 0), X = (2π, 0, 0), and L =
(π, π, π ). Raman frequencies at � obtained by a direct fit
of VMC energies, VMC forces, and LRDMC energies of the
structures displaced along the corresponding eigenmode are
also plotted in Fig. 1 [53]. In Table I and hereafter, (P) denotes
the interpolated frequencies obtained by Phonopy, (F) denotes
the phonon frequency at � obtained by force fitting, and (E)
denotes the phonon frequency at � obtained by energy fitting.
The corresponding Raman frequencies are consistent within
the error bars, indicating that the Slater determinant obtained
by DFT is almost optimal also in the presence of the Jastrow
factor, thus explaining why this consistency is satisfied quite
accurately [54]. In other words, if the wavefunction is at its
minimum, the consistency is a consequence. If it is not at its
minimum, the consistency may also be satisfied by chance or
good behavior of the used basis set.
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TABLE I. The highest harmonic phonon frequencies (THz) of diamond at high-symmetry q points. All phonons are calculated using the
experimental lattice parameter. In this table, (P) denotes the interpolated frequencies obtained by Phonopy, (F) denotes the phonon frequency
at � obtained by fitting forces of distorted structures along the Raman mode with a linear function at the VMC level, and (E) denotes the
phonon frequency at � obtained by fitting energies of undistorted and distorted structures along the Raman mode with a quadratic function at
the VMC and LRDMC levels. The last column indicates the harmonic frequencies estimated by the raw experimental values: 39.938 THz [22],
35.299 THz [23], and 37.962 THz [24] at the �, X , and L points, respectively.

DFT Previous work This workd Experiment

q LDA-PZ GGA-PBE VMCc DMCc VMC(P) VMC(F) VMC(E) LRDMC(E) Harmonic (Estimated)

� 38.55a 38.82b 41.64(9) 41.22(12) 40.65(38) 40.49(4) 40.68(29) 41.52(22) 40.460e, 40.349f

X 35.64 35.87 – – 36.48(40) – – – 35.476f

L 37.31 37.47 – – 38.01(31) – – – 38.242f

a38.40 THz in the previous DFT study employing the LDA functional. See Ref. [20].
b38.73 THz in the previous DFT study employing the GGA-PBE functional. See Ref. [20].
cThese values are taken from Ref. [20].
dThese values include the one-body finite size corrections, i.e., −0.16 THz, −0.18 THz, and −0.23 THz for q = �, X , and L, respectively.
eThe anharmonic renormalization, −17.4 cm−1 = −0.522 THz was employed. See Ref. [25].
fThe anharmonic renormalizations are −0.411 THz, −0.177 THz, and −0.280 THz for �, X , and L, respectively, which were estimated by
molecular dynamics simulations performed in this work.

All VMC (P), VMC (F), and VMC (D) calculations
give the harmonic phonon frequency at � very close to the
experimental value, considering the renormalization of the
anharmonic effect, i.e., the discrepancy is just ∼0.3 THz.
On the other hand, both DFT calculations with LDA-PZ
and GGA-PBE exchange-correlation functionals underesti-
mate the highest frequency at � by ∼1.8 THz and ∼1.5 THz,
respectively. Table I shows that our VMC phonon dispersion
calculation also gives accurate harmonic frequencies at other
q points, i.e., at X and L. Compared with the previous VMC
study [20], our VMC frequency at � point is closer to the
experimental value, as reported in Table I [55]. The improve-
ment at the VMC level certainly derives from the more flexible
Jastrow factor employed in this study, while the one used in
the previous VMC study was much simpler [20,56].

It is intriguing that our LRDMC calculation gives a 1.2(2)
THz higher Raman frequency than the experimental one, as
shown in Table I. The previous DMC study also overesti-
mated the Raman frequency by 0.9(1) THz [20]. To discuss
the origin of the discrepancy, we investigated the effect of
the lattice-space error in our LRDMC calculations. An ex-
trapolation (a → 0) with four lattice spaces (i.e., 0.20, 0.30,
0.40, and 0.50 bohr) yields 41.89(44) THz, suggesting that
the lattice-space error is not the origin of the discrepancy.
We also suspected that the experimental lattice parameter
employed in the phonon calculation could be significantly dif-
ferent from the theoretical one, but this is also not the origin,
as shown later. Therefore, the discrepancy should arise from
the fixed-node error and this should be alleviated by a nodal
surface optimization [32], which however is prohibitive in the
2 × 2 × 2 conventional supercells due to the large number of
variational parameters of the distorted structures. A possible
future work to study the nodal surface effect is the use of
various exchange-correlation functionals suitable for solids
such as HSE06 [57] and SCAN [58].

Since the equilibrium lattice parameter also affects phonon
frequencies, we investigated the equation of states (EOSs) of
diamond. Figure 2 shows plots of internal energies vs. vol-

umes fitted by the Vinet EOS [34]. Previous VMC and DMC
results [20], and the experimentally observed equilibrium lat-
tice parameter, are also plotted in Fig. 2 and summarized in
Table II. In Fig. 2, the zero point energy (ZPE) contribution
[20,59] is subtracted, to make the comparison possible with
internal energies computed at T = 0 and on static lattice. Ta-
ble II shows that our VMC calculation reproduces the previous
VMC study, while our LRDMC calculation gives a slightly
smaller lattice parameter [6.702(1) bohr] than the previous
DMC study [6.734(4) bohr]. This discrepancy likely derives
from the different nodal surfaces used in the two studies,
namely the one originating from the DFT-PBE orbitals in
Ref. [20] and the one coming from the LDA orbitals in our
work. Notice that both one-body and two-body finite size
errors are negligible for the EOS calculations, as shown in
Fig. S-6 [34]. Table II indicates that the equilibrium lattice

FIG. 2. Equation of states and the curves fitted by the Vinet
exponential function [47]. VMC and DMC results (Maezono et al.)
are taken from Ref. [20].
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TABLE II. Vinet EOS parameters. Zero point energy (ZPE) and temperature effects (TE) are not included in these theoretical data.

DFT QMC Experiment

Parameter LDA-PZ GGA-PBE VMCa DMCa VMC LRDMC w/o ZPE, w/o TE Observed

Lattice (bohr) 6.683 6.748 6.691(4) 6.734(4) 6.693(1) 6.702(1) 6.7193(5)b 6.7410(5)c

V0 (bohr3) 37.32 38.41 37.45(6) 38.17(6) 37.47(2) 37.63(2) 37.920(9)b 38.290(9)c

B0 (GPa) 465 433 483(4) 448(3) 476(6) 463(5) 457(1)b, 453(5)b 446(1)c, 442(5)d

B′
0 3.65 3.70 3.8(1) 3.7(1) 4.0(6) 4.9(6) 3.0(1)b, 4.0(7)b 3.0(1)c, 4.0(7)d

aThese values are taken from Ref. [20]. Here, ZPE and TE are subtracted.
bZPE and TE are corrected, −0.37 bohr3, +11 GPa, and −0.03 for V0, B0, and B′

0, respectively. See Ref. [20].
cThese values are taken from Ref. [45].
dThese values are taken from Refs. [45,46].

parameter of diamond is ∼0.03 bohr (∼0.02 bohr) smaller
than the experimental one at the VMC (LRDMC) level. Our
DFT calculations (Fig. S-4 [34]) suggest that the Raman fre-
quency is implicitly proportional to the lattice parameter, with
a gradient of −0.18 THz / 0.01 bohr. Therefore, if the equi-
librium lattice parameter (with ZPE) were employed instead
of the experimental one, VMC (LRDMC) calculations would
give ∼0.5 THz (∼0.4 THz) higher Raman frequencies while
still staying close to the experimental values.

Reducing the statistical errors of atomic forces is key to a
successful phonon calculation. We found that alleviating the
linear dependency of a localized atomic basis set drastically
decreases the statistical error. In general, a basis set optimized
for molecular systems is not suitable for solid state calcula-
tions (i.e., strongly linear dependent), due to the presence of
orbitals having small exponents (c.f., typically < 0.1) [60].
The quality of the basis set is systematically improved by
a general and efficient scheme implemented in TURBORVB
[21]. Indeed, the linear dependency of a localized atomic
basis set [ψμ(�r)] is characterized by the condition number,
κ (S), where Sμ,ν = 〈ψμ|ψν〉 is the overlap matrix [61]. In
TURBORVB, a redundant basis set is converted into a well-
conditioned one by disregarding small eigenvalues and the
corresponding eigenvectors of the overlap matrix S [21,32].
We note that a well-conditioned basis set can also be con-
structed by simply removing orbitals having small exponents,
while the method employed in this work is more general and
systematic. Figure 3 shows the plots of VMC energies, VMC
forces, and their statistical errors vs. the inverse of the condi-
tion number [κ (S)−1]. Figure 3(a) indicates that the statistical
error of the energy is independent of the condition number, at
variance with the statistical error of the force, which instead
strongly depends on it [Fig. 3(b)]. The error bar in the forces
amounts to ∼3.4 × 10−2 (Ha/bohr) when the atomic basis set
is strongly linear dependent [i.e., κ (S)−1 = 10−15], a condi-
tion that also introduces some bias in the forces because, as we
have verified, they are no longer consistent with the finite dif-
ference energy derivatives for κ (S)−1 < 10−12 [see Fig. 3(b)].
On the other hand, the statistical error becomes much smaller,
∼1.7 × 10−3 (Ha/bohr), by removing the linear dependency
[i.e., κ (S)−1 = 10−7]. The space warp coordinate transforma-
tion (SWCT) [48] is able to further reduce the statistical error.
Indeed, Fig. 3(b) shows that the error bar of the force be-
comes ∼4.1 × 10−4 (Ha/bohr) by using the SWCT algorithm
combined with a well-conditioned basis set, corresponding

to ∼104 times more efficient computation than a bare force
treatment.

We analyze now in detail the reason of this behavior. TUR-
BORVB evaluates atomic forces in a differential form (i.e, by
the algorithmic differentiation) [48,62]:

Fα =
〈

dE

dRα

〉
|�R |2

�
〈

E (R + �Rα ) − E (R)

�Rα

〉
|�R |2

,

where R = (R1, . . . , Rα, . . .) and �Rα = (0, . . . ,�Rα, . . .).
This equation suggests that the statistical error on forces
depends on how much the wavefunction changes after an
atom is displaced. In other words, to minimize the stochastic
error, the overlap 〈�R+�Rα |�R〉 should be close to unity.
To investigate the effect of the linear dependency on the
overlap, we calculated 〈�R+�Rα |�R〉 with linear-dependent
and linear-independent basis sets, using correlated sampling
techniques [32], where only one carbon atom in the 1 × 1 × 1
conventional simulation cell was displaced in the x direc-
tion by �Rα = 0.005 bohr. We obtained 0.9999 and 0.9726
for κ (S)−1 = 10−7 and κ (S)−1 = 10−15, respectively. This
clearly indicates that the linear dependency of the basis set
deteriorates the overlap 〈�R+�Rα |�R〉, thus increasing the
statistical error of forces.

The deterioration is explained as follows. Here, a simple
Slater wavefunction without Jastrow factor is considered for
the sake of clarity. In this case, the overlap 〈�R|�R〉 reads
〈�R|�R〉 = det〈φR

i |φR
j 〉, where φR

i is the i-th molecular
orbital depending on nuclear positions R, defining the above
N × N determinant matrix. The molecular orbital is expanded
over localized atomic orbitals, i.e., φR

i = ∑
a,l ci,{a,l}ψRa

{a,l},
where ψ

Ra
{a,l} are (periodized) atomic orbitals explicitly

dependent on a nuclear position Ra {a = 1, . . . , α, . . .},
while ci,{a,l} are nuclear position independent. We can
readily derive 〈�R|�R〉 = 1 when the molecular orbitals
are orthonormalized (i.e., 〈φR

i |φR
j 〉 = δi, j). What about

〈�R+�Rα |�R〉? We would like to show how the perturbation
d

dRα
φR

i ≡ ∑
a=α,l ci,{a,l} d

dRα
ψ

Ra
{a,l} affects the overlap. In DFT

calculations, it turns out that |ci,{a,l}| 
 1 when the basis is
redundant [e.g., κ (S)−1 = 10−15], while |ci,{a,l}| � 1 when
the basis set is well-conditioned [e.g., κ (S)−1 = 10−7]. When
|ci,{a,l}| � 1, the perturbation effect is rather small, and the
orthonormalization condition almost holds, while |ci,{a,l}| 
 1
makes the perturbation effect significant, and by consequence
the orthonormalization condition is certainly deteriorated.
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)b()a(

FIG. 3. (a) VMC energies and their statistical error bars and (b) VMC forces and their statistical error bars vs. inverse of the condition
number of the overlap matrix. The numerical data is shown in Table S-II [34]. The forces were calculated with and without the space warp
coordinate transformations (SWCT) [48]. The Hellmann-Feynman and Pulay contributions to the forces are shown in Fig. S-7 [34]. The same
VTZ atomic basis set and the pseudopotential [33] as in the phonon and EOS calculations were adopted, while a 1 × 1 × 1 conventional cell
(8 carbon atoms in a simulation cell) with k = � twist was employed. Only one carbon atom was displaced in x direction by 0.15 bohr, see
Table S-III [34].

This is why the linear dependency of an atomic basis set
deteriorates the overlap, and thus induces a large error bar
in forces. Thus, a complete all-electron and pseudopotential
basis set database suitable for QMC solid state calculations
will be quite useful for the application of QMC forces to the
calculations of phonons in realistic materials.

In summary, we report a VMC determination of the
momentum-resolved phonon dispersion of diamond. Our
approach combines the ab initio quantum Monte Carlo frame-
work with the so-called frozen phonon technique. It gives
results in very good agreement with experiments and provides
renormalized harmonic optical frequencies consistent with the
experimental findings. We estimated the purely harmonic con-
tribution to the phonon spectrum, by evaluating q-dependent
anharmonic corrections by means of a path integral molecular
dynamics driven by PBE forces [52]. After including these
corrections, the VMC phonon spectrum agrees very well with
the experimental phonon dispersion. We found that alleviat-
ing the atomic basis-set redundancy of the trial wavefunction
is key to reduce the statistical error of atomic forces, and
thus to make VMC phonon calculations feasible over the
full Brillouin zone. This achievement paves the way to new
relevant applications, for instance in correlated materials and
Van der Waals crystals (i.e., molecular crystals [63,64]) where
sometimes phonons are poorly reproduced within the DFT
framework.
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