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We develop a unified framework for understanding the sign of fermion-mediated interactions by exploiting
the symmetry classification of Green’s functions. In particular, we establish a theorem regarding the sign of
fermion-mediated interactions in systems with chiral symmetry. The strength of the theorem is demonstrated
within multiple examples with an emphasis on electron-mediated interactions in materials.
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Introduction. That the exchange of a particle can produce
a force is one of the most remarkable conceptual advances
in physics. Each of the fundamental interactions has an
associated bosonic force carrier: For example, photons medi-
ate Coulomb interactions and gravitons mediate gravitational
interactions. Given these boson-mediated interactions, one
may naturally ask the following innocuous question: “Can
fermions also mediate interactions?”

While the answer is “yes,” there is an essential difference
between boson-mediated interactions and fermion-mediated
interactions. That is, due to the conservation of fermionic
parity, fermions need to be exchanged at least twice to produce
a force whereas bosons only need to be exchanged once (see
the Feynman diagram in Fig. 1). As this Feynman diagram
resembles that of the Casimir effect, fermion-mediated inter-
actions are occasionally called fermionic Casimir effects in
the literature [1]. In the case of one-boson-mediated inter-
actions, the sign is uniquely determined by the spin of the
exchanged particles: Exchanging a scalar, or a tensor, particle
produces a universally attractive force, while exchanging a
vector particle can produce a repulsive force between like
charges [2]. However, unlike the bosonic case, a universal
understanding of the sign of fermion-mediated interactions is
currently lacking.

In this Letter, we study the sign of various fermion-
mediated interactions. In condensed-matter physics, electron-
mediated interactions were initially proposed to explain
the ordering of adsorbates at surfaces [3,4], and were
recently considered to be crucial for engineering the prop-
erties of novel materials such as graphene [5]. As an
important mechanism for magnetic ordering, the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction is another example
of electron-mediated interactions [6]. In the cold-atom
area, fermion-mediated interactions have received extensive
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theoretical investigations [7] and were recently observed in
experiments consisting of a mixture of bosonic and fermionic
quantum gases [8]. In high-energy physics, fermion-mediated
interactions are of particular relevance to the physics of
neutron stars [9] and quark-gluon plasma [10]. Given the ubiq-
uitous presence of fermion-mediated interactions, their sign is
of both theoretical interest and practical significance [11–13].
For example, attractive fermion-mediated interactions could
lead to new phases of matter such as supersolids [14].

By exploiting the symmetry classification of Green’s func-
tions [15,16], we present a unified framework for understand-
ing the sign of fermion-mediated interactions, eliminating
some loopholes and resolving some controversies in the liter-
ature. The symmetry that plays the central role is called chiral
symmetry, which is a combination of time-reversal symmetry
and charge-conjugation symmetry. The associated chirality
corresponds to whether an operator is even or odd under the
action of the chiral symmetry. Specifically, in systems with
chiral symmetry, we show that the sign of fermion-mediated
interactions U12 between objects X1 and X2 is given by the
simple rule

sgn(U12) = (−1)ηχ1χ2. (1)

Here, χ1(2) = ±1 is the chirality of the object X1(2); η = 0 or 1
depending on the strength of scattering potentials being strong
or weak. Between objects with the same chirality, a strong
scattering potential leads to repulsion, whereas a weak scat-
tering potential leads to attraction. By sharp contrast, between
objects with opposite chiralities, a strong scattering potential
leads to attraction, whereas a weak scattering potential leads
to repulsion.

The rest of the Letter is organized as follows. We first
derive a nonperturbative expression of fermion-mediated
interactions involving Matsubara Green’s functions and scat-
tering matrices. Then, we show how nonspatial (local)
symmetries constrain the Green’s functions and scattering
matrices of a general interacting system. With the above
preparation, we establish a theorem regarding the sign of
fermion-mediated interactions. Finally, we demonstrate the
power of our theorem by giving a number of examples with
an emphasis on electron-mediated interactions in materials.
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Field theory of fermion-mediated interactions. To set the
stage, we now present a unified expression for fermion-
mediated interactions. While various expressions for fermion-
mediated interactions exist in the literature [11,12,17], a
universal, and nonperturbative, derivation is not entirely triv-
ial. A related path-integral approach has been used to study
the Casimir effect in Refs. [18,19].

Consider two objects Xi (i = 1, 2) embedded at the posi-
tions xi in a fermionic environment, and introduce localized
potential operators V̂i to describe the scattering effect of Xi.
We consider bilinear coupling ψ̄V̂iψ between the operators V̂i

and the mediating fermionic fields (ψ̄, ψ); thus the effective
Euclidean action reads (we use units h̄ = c = 1)

S = −
∑

n

∫
dx ψ̄n(x)(Ĝ−1 − V̂1 − V̂2)ψn(x), (2)

where Ĝ = (iωn + Ĥ )−1 represents the Matsubara Green’s
function of the fermionic host. The partition function of the
whole system is Z = ∫

Dψ̄Dψ exp (−S ). In the absence of
Xi, the partition function Z0 can be obtained from Z by setting
V̂i = 0. Consequently, the change of the energy due to the
introduction of Xi can be formally obtained from the reduced
partition function

E = − 1

β
ln

Z
Z0

= − 1

β
ln det[1 − G(x, x′)V1 − G(x, x′)V2], (3)

where G(x, x′) = 〈x|Ĝ|x′〉, Vi = 〈x′|V̂i|x′〉 δx′,xi , and β is the
inverse temperature. Note that the total energy E contains
three parts: the self-energies of X1 and X2 and the mutual
interaction between them. Therefore, to obtain the interaction
energy, we need to subtract the self-energy contribution that
does not depend on the relative positions of X1 and X2. For
this purpose, it is convenient to put the energy in a matrix
form:

E = − 1

β
ln det

(
1 − G11V1 −G12V2

−G21V1 1 − G22V2

)
. (4)

Here, G12 ≡ G(iωn, r) and G21 ≡ G(iωn,−r) are the Mat-
subara Green’s functions linking X1 with X2; G11 = G22 ≡
G(iωn, 0) are local Matsubara Green’s functions; r = x2 − x1

denotes the relative distance between X1 and X2; and ωn =
(2n + 1)πβ−1 are fermionic Matsubara frequencies. After
subtracting the self-energies, i.e., the diagonal contribution of
the matrix, we obtain the universal formula for two-particle
exchange interactions,

U12 = − 1

β

∑
n

ln det(1 − G12 T2 G21 T1), (5)

where T1 = V1(1 − G11V1)−1 and T2 = V2(1 − G22V2)−1 rep-
resent the scattering matrices for X1 and X2 [20]. Note
that Eq. (5) is derived without using any perturbative ex-
pansion, and thus it applies to strong scattering potentials.
If the fermionic host is weakly correlated, G12 and G21

represent the renormalized Matsubara Green’s functions
with interactions encoded in their self-energy parts. To the
lowest-order expansion, U12 = 1

β

∑
n G12 T2 G21 T1 represents

X1 X2

Fermionic environment

FIG. 1. Feynman diagram for fermion-mediated interactions.
The red lines represent fermionic Green’s functions (propagators)
G12 and G21 that connect X1 and X2. Since two Green’s functions
are involved in the Feynman diagram, we say that objects X1 and
X2 interact with each other by exchanging fermions twice. The blue
bubbles represent the scattering matrices of X1 and X2, the form of
which will be given in the text.

a two-fermion-exchange interaction, as illustrated in Fig. 1.
One could obtain the zero-temperature formula by replacing
1
β

∑
n with

∫ dξ

2π
(ξ is the imaginary frequency) in Eq. (5),

which agrees with the result in the literature [11,12].
Symmetry classification of Green’s functions. We now

present one more ingredient—the symmetry classification of
Green’s functions—aiming at a universal theorem for the
sign of fermion-mediated interactions. In recent years, the
classification of Green’s functions under nonspatial sym-
metries, namely time-reversal symmetry, charge-conjugation
(particle-hole) symmetry, and chiral symmetry, has been used
to classify topological phases of correlated fermions [15]. For
clarity, we start with the symmetry classification of nonin-
teracting Hamiltonians [16] and then derive the symmetry
classification of Matsubara Green’s functions which turns out
to be particularly useful when interactions are present.

Consider a general system of noninteracting fermions de-
scribed by the Hamiltonian Ĥ = ∑

αβ ψ†
αHαβψβ with the

fermion creation and annihilation operators satisfying canon-
ical anticommutation relations {ψα,ψ

†
β} = δαβ . Here, the

indices α, β refer to relevant degrees of freedom, such as
lattice sites, spins, layers, etc.; and H, the first quantized
Hamiltonian, is a complex matrix. Under the constraints of
time-reversal symmetry and charge-conjugation symmetry,
the Hamiltonian matrix H satisfies the following conditions,

U †
TH∗(k)UT = H(−k), (6a)

U †
CH∗(k)UC = −H(−k), (6b)

where UT and UC are the corresponding unitary matrices. It is
crucial to consider an additional discrete symmetry, the chiral
symmetry, being the product of time-reversal symmetry and
charge-conjugation symmetry. The chiral symmetry imposes
an additional condition on the Hamiltonian matrix

U †
S H(k)US = −H(k), (7)

with the chiral matrix US = U ∗
T UC . Notice that the chiral sym-

metry can be present in cases where neither time-reversal nor
charge-conjugation symmetry is present. The above symmetry
constraints lead to the tenfold classification of topological
insulators and superconductors [16].
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Equipped with the above Hamiltonian formalism, we
now proceed to present the symmetry classification of the
Green’s functions. We are interested in the Matsubara Green’s
functions defined as G(iωn, k) = [iωn − H(k)]−1. Accord-
ing to Eqs. (6a), (6b), and (7), time-reversal symmetry and
charge-conjugation symmetry set the following conditions for
Matsubara Green’s functions, i.e.,

UTG(iωn, k)U †
T = 1

iωn − H∗(−k)
= G∗(−iωn,−k), (8a)

UCG(iωn, k)U †
C = 1

iωn + H∗(−k)
= −G∗(iωn,−k). (8b)

Furthermore, chiral symmetry implies that the Matsubara
Green’s function should fulfill the condition

USG(iωn, k)U †
S = −G(−iωn, k), (9)

consistent with Eqs. (8a) and (8b). Finally, regardless of
whether or not interactions are present, the Hermicity of the
Hamiltonian ensures that

G(iωn, k) = G†(−iωn, k). (10)

As a result, the combination of chiral symmetry and Hermicity
leads to the momentum-space condition

USG(iωn, k)U †
S = −G†(iωn, k), (11)

which, after Fourier transform, yields the real-space expres-
sion

USG(iωn, r)U †
S = −G†(iωn,−r), (12)

which is an essential ingredient in the proof of our theorem.
While the above Eqs. (8a), (8b), and (9) are obtained from
noninteracting Hamiltonians, a sophisticated field-operator
approach shows that the above Green’s function formalism
also holds for interacting systems. Interested readers could
also find the proof from the excellent works in Ref. [15].

The theorem. In systems with symmetry, it is often con-
venient to choose a chiral basis such that the chiral operator
US is diagonal, i.e., US = diag(1n,−1m), where 1n and 1m are
n × n and m × m identity matrices. The eigenvalue +1 (−1)
denotes the chirality of the corresponding basis. One can then
use the Pauli matrix τz to represent US for each pair of basis
states with opposite chiralities. (We use τx,y,z to represent Pauli
matrices for general degrees of freedom, while reserving the
notation σx,y,z for real spin.) The Matsubara Green’s function
matrix in the pair chiral basis (|χ〉, |χ̄〉) reads

G(iωn, r) =
(
Gχχ (iωn, r) Gχχ̄ (iωn, r)
Gχ̄χ (iωn, r) Gχ̄ χ̄ (iωn, r)

)
, (13)

where the indices χ = −χ̄ = ±1 represent chiralities of the
corresponding basis. Apparently, the diagonal components of
the Green’s function connect objects with the same chirality,
whereas the off-diagonal components connect objects with
opposite chiralities. By substituting the Matsubara Green’s
function and US = τz into Eq. (12), we obtain the crucial
conditions required by the chiral symmetry,

Gχχ (iωn, r) = −Gχχ ∗(iωn,−r), (14a)

Gχχ̄ (iωn, r) = Gχ̄χ ∗
(iωn,−r). (14b)

If two objects have the same chirality, the connecting
Matsubara Green’s functions satisfy G12 ≡ Gχχ (iωn, r) =
−G∗

21 ≡ −Gχχ ∗(iωn,−r). By contrast, if two objects have op-
posite chiralities, the connecting Matsubara Green’s functions
satisfy G12 ≡ Gχχ̄ (iωn, r) = G∗

21 ≡ Gχ̄χ ∗(iωn,−r). As indi-
cated by Eq. (5), the sign of the fermion-mediated interaction
is identical to the sign of the product G12T2G21T1 [21]. Due to
the expression of the scattering matrices [below Eq. (5)], two
possibilities can be distinguished:

(1) In the limit of a strong potential (Vi → ∞), the scat-
tering matrices T1 = T2 = G−1(iωn, 0) are purely imaginary
according to Eq. (14a), and therefore T1T2 < 0. It is then
straightforward to obtain the sign of fermion-mediated inter-
actions in the following cases:

(i) Between two objects with the same chirality, the
fermion-mediated interactions are always repulsive because

sgn(U12) = sgn(G12T2G21T1)

= −sgn(G∗
21T2G21T1) > 0. (15)

(ii) Between two objects with opposite chiralities, the
fermion-mediated interactions are always attractive due to

sgn(U12) = sgn(G12T2G21T1)

= sgn(G∗
21T2G21T1) < 0. (16)

(2) In the limit of a weak potential (Vi → 0), the scattering
matrices Ti = Vi are purely real, and T1T2 > 0. Hence, the
signs of fermion-mediated interactions are opposite to the case
of strong potential: Between two objects with the same (op-
posite) chirality, the fermion-mediated interactions are always
attractive (repulsive).

As the above results can be conveniently summarized in
Eq. (1), we have thus established the theorem for the sign of
fermion-mediated interactions. The above analysis indicates
that one could change the sign of fermion-mediated interac-
tions by tuning the strength of the scattering potentials. To
demonstrate the power of this theorem, we now explore a
number of examples with an emphasis on electron-mediated
interactions in materials.

Electron-mediated interactions in noninteracting systems.
As our first example, let us consider electron-mediated in-
teractions between two adatoms embedded in monolayer
graphene. The physics of single-layer graphene is cap-
tured by the continuum low-energy Hamiltonian HSLG =
vF (kxτx + kyτy), where τx,y,z represent the Pauli matrices in
the sublattice basis, and vF is the Fermi velocity [22]. One
can easily identify the chiral transformation matrix US = τz.
Therefore, without a further detailed calculation, we can ap-
ply the theorem to graphene. In the strong-impurity limit
[23], adatoms residing on the same (different) sublattices re-
pel (attract), whereas in the weak-impurity limit, impurities
residing on the same (different) sublattices attract (repel).
This is consistent with detailed calculations carried out in
Refs. [11,12] One can consider more general Hamiltonians
such as H = vF (kn

x τx + km
y τy), where m and n can be arbitrary

odd numbers. As the chiral matrix for this Hamiltonian is still
US = τz, our theorem also applies to this model.

Our second example deals with the electron-mediated in-
teractions in the Bernal-stacked bilayer graphene, the unit cell
of which includes A1 and B1 atoms on layer 1 and A2 and B2
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atoms on layer 2. Expressed in the basis (ψA1, ψA2, ψB1, ψB2)
(here subindices denote the lattice type), the low-energy ef-
fective Hamiltonian reads [24]

HBLG =
(

0 D∗(−r)
D(r) 0

)
, D(r) =

(−i∂+ γ

0 −i∂+

)
,

(17)

where ∂± = ∂x ± i∂y and γ denotes the interlayer coupling;
we set the Fermi velocity vF = 1. It can be verified that
this Hamiltonian preserves chiral symmetry with the chiral
matrix US = τz ⊗ 1, which indicates that sublattices (A1, A2)
have positive chirality while sublattices (B1, B2) have neg-
ative chirality. Accordingly, regardless of the layer index,
the electron-mediated interactions are always repulsive (at-
tractive) between impurities on the same type of sublattices
(i.e., AA or BB) in the strong- (weak-) impurity limit. In
contrast, when impurities reside on different sublattices (i.e.,
AB), the electron-mediated interactions are always attractive
(repulsive) in the strong- (weak-) impurity limit.

One may also apply the theorem to study the twisted
bilayer model, which has generated considerable interest re-
cently. A specific chiral-symmetric model [25] that supports
exactly flat bands has a similar form as Eq. (17) but with a
different D matrix,

DtBLG(r) =
( −vF i∂+ F (θ, r)
F (θ,−r) −vF i∂+

)
, (18)

where the moiré potential F (θ, r) is a function of the twist
angle θ and position r. Regardless of the specific form
of F (θ, r), this model preserves chiral symmetry with the
same chiral matrix as Bernal-stacked bilayer graphene. Con-
sequently, the sign of an electron-mediated interaction in
twisted bilayer model shares the identical feature with that
in the Bernal-stacked bilayer graphene. The chiral-symmetry
protected sign of fermion-mediated interactions could be
of essential importance for understanding disorder-related
physics in twisted bilayer models. We should, however, clar-
ify that twisted bilayer materials in experiments may violate
chiral symmetry due to the substrate or interactions.

Electron-mediated interaction in correlated systems. Our
theorem is applicable to weakly interacting systems. We ex-
amine electron-mediated interactions in the Hubbard model
defined on a bipartite lattice

Ĥ =
∑

〈i, j〉,σ
ti j ĉ

†
i,σ ĉ j,σ − μ

∑
i

n̂iσ + U
∑

i

n̂i↑n̂i↓, (19)

where ĉi,σ and ĉ†
i,σ is the electron annihilation and creation

operators at site i with spin σ =↑ or ↓ and n̂iσ = ĉ†
iσ ĉiσ .

Here, the nearest-neighbor hopping matrix elements ti j = t ji

need to be real; μ and U represent the chemical potential and
on-site interaction strength, respectively. One can verify that
the Hamiltonian is invariant at half filling (μ = U/2) under
the following chiral symmetry transformation: Ŝ ĉi↑/↓Ŝ−1 =
κ (i)ĉ†

i↓(↑), Ŝ ĉ†
i↑(↓)Ŝ−1 = κ (i)ĉi↓(↑), with κ (i) = 1 for one of

the sublattices and κ (i) = −1 for the other. It should be ob-
vious that the same sublattices have the same chirality and
different sublattices have opposite chiralities. We assume that
U is small enough for the ground state to preserve chiral sym-
metry so that our result Eq. (5) still holds. Without performing

any perturbative calculation, we can apply our theorem to the
correlated bipartite lattices: Fermion-mediated interactions
are repulsive or attractive depending on the impurities located
on the same or different sublattices. Our theorem can be ap-
plied to all weakly coupled models with chiral symmetry, such
as Bogoliubov–de Gennes (BdG) systems with time-reversal
symmetry [26] and quantum chromodynamics (QCD) at high
density [27].

RKKY interactions in systems with chiral symmetry. A sim-
ilar line of reasoning enables us to predict the sign of RKKY
interactions in the presence of chiral symmetry: Magnetic mo-
ments with the same (opposite) chirality favor a ferromagnetic
(antiferromagnetic) state. We demonstrate this statement by
considering two magnetic moments (S1 and S2) embedded in
a fermionic system described by the effective action

S = −
∑

n

∫
dx ψ̄n(x)

[
G−1 − J

2
S1 · σδ(x − x1)

−J

2
S2 · σδ(x − x2)

]
ψn(x), (20)

with G being the Green’s function of the host system and J as
the coupling constant between the impurity magnetic moment
and the spin of electrons σμ (μ = x, y, z) located at x1 and
x2, respectively. Note that this action has the same form as
Eq. (2) given the substitution V̂i = Si · σδ(x − xi ). According
to Eq. (5), we then obtain the interaction energy of the nuclear
spins (to the lowest order of J),

U12 = J2

4β

∑
μ,ν,n

tr[S1μσμG(iωn, r)S2νσνG(iωn,−r)]

= −J2α(r)S1 · S2, (21)

where the susceptibility is defined as α(r) =
− 1

2β

∑
n G(iωn, r)G(iωn,−r) with r = x2 − x1 as the relative

distance between the localized spins. Note that we have
assumed that the Green’s function is spin independent
in the above derivation. An additional term such as a
Dzyaloshinskii-Moriya type of interaction can emerge in
spin-orbital coupled systems where the Green’s functions
depend on spin [28,29]. It is also desirable to generalize
Eq. (21) to SU(N) RKKY interactions due to the remarkable
progress in experiments [30,31].

The two possibilities, α(r) > 0 [α(r) < 0], correspond to
a ferromagnetic (antiferromagnetic) alignment of magnetic
moments. Consider two magnetic moments (spins) that are
embedded in a system with chiral symmetry, and have definite
chiralities χ1 and χ2, respectively. The susceptibility can then
be written as

αχ1χ2 = − 1

2β

∑
n

Gχ1χ2 (iωn, r)Gχ2χ1 (iωn,−r). (22)

Based on the symmetry properties of Green’s functions [see
Eqs. (14a) and (14b)], we can verify that αχχ > 0 and αχχ̄ <

0. As a result, magnetic moments with the same (opposite)
chirality favor a ferromagnetic (antiferromagnetic) alignment.
This applies to all the examples discussed in the previous
sections. Note that our theorem exhibits two major differences
compared to the theorem concerning the sign of RKKY inter-
actions on noninteracting bipartite lattices [34,35]. First, our
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theorem has a broader scope of application, as the bipartite
model is only a specific system preserving chiral symmetry.
Second, our theorem can be applied to interacting models as
long as chiral symmetry is present. This indicates the possibil-
ity of chiral symmetry breaking in the previous calculations,
which showed that the sign of the RKKY interactions can be
modified by electronic interactions, edge states, strains, or flat
bands [36].

Concluding remarks. We have established a universal the-
orem regarding the sign of fermion-mediated interactions in
systems with chiral symmetry. We have demonstrated the
strength of the theorem by considering multiple examples
ranging from noninteracting models to weakly correlated sys-
tems. Without involving any spatial symmetry, the theorem
is robust to disorders and defects. Furthermore, our theorem

suggests another route to probe chiral symmetry breaking via
fermion-mediated interactions: When additional parameters
break chiral symmetry, the sign of fermion-mediated interac-
tions will not be definite, and will oscillate with respect to
these parameters. In the future, it will be interesting to in-
vestigate how other symmetries (e.g., crystalline symmetries)
constrain fermion-mediated interactions. It would also be de-
sirable to study the sign of two-boson-mediated interactions
in systems with chiral symmetry [37].
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