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Spin Seebeck effect in nonmagnetic excitonic insulators
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We propose a mechanism of the spin Seebeck effect attributed to excitonic condensation in a nonmagnetic
insulator. We analyze a half-filled two-orbital Hubbard model with a crystalline field splitting in the strong
coupling limit. In this model, the competition between the crystalline field and electron correlations brings about
an excitonic insulating state, where the two orbitals are spontaneously hybridized. Using the generalized spin-
wave theory and Boltzmann transport equation, we find that a spin current generated by a thermal gradient
is observed in the excitonic insulating state without magnetic fields. The spin Seebeck effect originates from
spin-split collective excitation modes although the ground state does not exhibit any magnetic orderings. This
peculiar phenomenon is inherent in the excitonic insulating state, whose order parameter is time-reversal odd and
yields a spin splitting for the collective excitation modes. We also find that the spin current is strongly enhanced
and its direction is inverted in the vicinity of the phase transition to another magnetically ordered phase. We
suggest that the present phenomenon is possibly observed in perovskite cobaltites with the GdFeO3-type lattice
distortion.
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Spin current generation in insulating magnets has attracted
considerable attention not only in modern condensed matter
physics but also for applications to spintronic devices. While
electric current cannot be produced in insulating magnets, spin
current is successfully created by an applied thermal gradient,
which is known as the spin Seebeck effect (SSE) [1–3]. The
spin current is carried by spin-polarized collective excitations
from a spin aligned ground state [4,5]. Therefore, materials
showing the SSE have been explored in ferrimagnets and fer-
romagnets [6–9]. Recently, antiferromagnetic insulators and
quantum spin liquid under magnetic fields are also considered
as the candidates [10–13]. In contrast to these magnets, the
SSE in nonmagnetic insulators remains elusive because spin-
polarized excitations are not trivially present. Here, we focus
on excitonic condensation instead of magnetic orderings to
propose another type of the SSE.

The excitonic insulating (EI) state, where the conduction
and valence bands are spontaneously hybridized by electron
correlations, is a long-standing subject in condensed matter
physics [14–22]. This state has been proposed to be realized
in several multiorbital materials, e.g., transition metal oxides
and chalcogenides [23–31]. Recently, it has been theoretically
suggested that a carrier-doped excitonic magnet shows spin-
split Fermi surfaces, which leads to spin current generation
mediated by spin-polarized electrons [32–35]. This does not
originate from the intrinsic spin-orbit coupling but is caused
by the double-exchange mechanism [32]. On the other hand,
this mechanism is absent in insulators. Meanwhile, the EI state
is characterized by a certain order, which is not accompanied
by magnetic orderings but is time-reversal broken [27–29,36–
40]. Its order parameter gives rise to an effective internal field,
which is expected to yield a spin splitting in the excitation

spectra. However, spin transport properties in an undoped EI
is not fully elucidated.

In this Letter, we investigate the spin excitations and trans-
port properties of an EI state. We analyze an effective model
derived from the two-orbital Hubbard model in the strong
correlation limit, by using the generalized spin-wave theory
(GSWT) and Boltzmann transport equation. We find that the
collective spin excitations show a spin-dependent splitting
in the nonmagnetic EI (NEI) state, which is a time-reversal
broken state without magnetic dipole moments corresponding
to a higher-order magnetic multipole order. As a result, a
spin conductivity with respect to a thermal gradient becomes
nonzero, i.e., the SSE appears, even without magnetic fields.
This is attributed to the time-reversal symmetry breaking
inherent in the NEI state. The spin conductivity substan-
tially increases and its sign changes by temperature near the
phase boundary to another EI state because of the softening
of the spin-split mode. Finally, we propose how to verify
our mechanism by presenting perovskite cobaltites with the
GdFeO3-type lattice distortion.

We start from the following two-orbital Hubbard model
[41]: H = HU +Ht , where the Hamiltonians for local
contributions and intersite electron hoppings are given
by HU = �

∑
i nia + U

∑
iγ niγ↑niγ↓ + U ′ ∑

i nianib +
J

∑
iσσ ′ c†

iaσ c†
ibσ ′ciaσ ′cibσ + I

∑
i,γ �=γ ′ c†

iγ↑c†
iγ↓ciγ ′↓ciγ ′↑ and

Ht = ∑
〈i j〉γ σ tγ (c†

iγ σ c jγ σ + H.c.) + V
∑

〈i j〉σ (c†
iaσ c jbσ +

c†
ibσ c jaσ + H.c.), respectively. Here, c†

iγ σ is the creation
operator of the electron with spin σ (=↑,↓) in orbital
γ (= a, b) at site i, and niγ = ∑

σ c†
iγ σ ciγ σ is the number

operator. The crystalline field splitting, intraorbital and
interorbital Coulomb interactions, Hund coupling, and pair
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hopping interaction are represented by �, U , U ′, J , and I ,
respectively. In addition to the transfer integral tγ between
the γ orbitals in the nearest neighbor (NN) sites 〈i j〉 in Ht ,
we consider the interorbital hopping V between the different
orbitals in the NN sites.

In the present study, we focus on the electronic prop-
erties of the half-filling case in the strong correlation
limit. The low-energy local eigenstates for HU are the
low-spin (LS) state |L〉 = ( f c†

b↑c†
b↓ − gc†

a↑c†
a↓)|∅〉, where

f = √
(1 + �/�′)/2 and g = √

(1 − �/�′)/2 with �′ =√
�2 + I2, and three high-spin (HS) states {|X 〉, |Y 〉, |Z〉},

which are given by |X 〉 = 1√
2
(−c†

a↑c†
b↑ + c†

a↓c†
b↓)|∅〉, |Y 〉 =

i√
2
(c†

a↑c†
b↑ + c†

a↓c†
b↓)|∅〉, and |Z〉 = 1√

2
(c†

a↑c†
b↓ + c†

a↓c†
b↑)|∅〉.

Here, |∅〉 stands for the vacuum. The effective model is de-
fined for the subspace composed of the direct product of
these four local states. Using the second-order perturbation
expansion with respect to Ht , the low-energy Hamiltonian is
obtained as

Heff = −�z

∑
i

τ z
i + Jz

∑
〈i j〉

τ z
i τ

z
j + Js

∑
〈i j〉

Si · S j

− Jx

∑
〈i j〉�

τ x
�iτ

x
� j − Jy

∑
〈i j〉�

τ
y
�iτ

y
� j

− K
∑
〈i j〉�

(
S�

i τ x
� j + τ x

�iS
�
j

)
, (1)

where the exchange constants, �z, Js, Jx, Jy, and K are deter-
mined by the parameters in H [42]. In the effective model,
SX

i , SY
i , and SZ

i represent the spin-1 operators at site i for
the HS states, and the pseudospins τ x

� , τ
y
� (� = X,Y, Z),

and τ z describe the matrix elements between LS and HS
states, where τ x

� = |L〉〈�| + |�〉〈L|, τ
y
� = i(|L〉〈�| − |�〉〈L|),

and τ z = ∑
� (|�〉〈�| − |L〉〈L|), respectively. Note that τ z

represents the energy difference between LS and HS states,
and τ x

� and τ
y
� yield the hybridization between these states.

Therefore, nonzero expectation values of τ x
� and τ

y
� indicate

the emergence of the EI state. In particular, the former (latter)
is the time-reversal odd (even) operator, and therefore, τ x

� can
couple with the spin operators as shown in Eq. (1), where
the coupling constant K is proportional to (ta + tb)V ; K is
nonzero in the presence of the interorbital hopping [42]. In
the following calculations, we study the system with the direct
gap, tatb < 0. In this case, the exchange constants Jx and Jy

satisfy the relation Jx � Jy and Jx is positive. This leads to
the ferrotype pseudospin correlation while the spin exchange
constant Js is always antiferromagnetic.

To analyze the spin excitations and transport properties in
the Hamiltonian Eq. (1), we apply the GSWT [42–49]. In this
method, the mean-field (MF) approximation is applied, and
the Hamiltonian is divided into Heff = ∑

iHMF
i +H ′; HMF

i
is the local MF Hamiltonian obtained by the decoupling of the
exchange interactions and H ′ is the contribution beyond the
MF Hamiltonian. H ′ is given by the interactions between the
fluctuation around the MFs, δOi = Oi − 〈0;Ci|O|0;Ci〉, where
|0;Ci〉 is the local MF ground state of HMF

i on sublattice Ci

to which site i belongs. In the GSWT, this is approximated
as δOi 
 ∑

n〈n;Ci|O|0;Ci〉a†
in + H.c., where a†

in is a creation
operator of a boson, where the summation for n is taken for the

local excited states of HMF
i . By the above procedure, Heff is

approximated as HSW, which is written as a bilinear form of
the bosons a†

in [42]. This is diagonalized by the Bogoliubov
transformation [50]. We introduce a new bosonic operator
α†

qη with the excitation energy ωqη for the wave vector q and
blanch η. Using the GSWT, we calculate the dynamical spin
correlator [36,42]

S��′
(q, ω) = 1

2π

∫ ∞

−∞
dt〈〈0|δS�

q (t )δS�′
−q|0〉〉eiωt−δ|t |, (2)

where δS�
q = N−1/2 ∑

i δS�
i e−iq·ri , O(t ) = eiHSWtOe−iHSWt , δ

is a broadening factor, and |0〉〉 is the vacuum for the Bogoli-
ubov bosons.

The thermal conductivity κ ≡ κxx
E and spin conductivity

with respect to a thermal gradient, κs ≡ κxx
Sz , are defined by

〈Jμ

O 〉∇T /V = κ
μν

O (−∇νT ), where V is the volume, 〈· · · 〉∇T

represents the expectation value in the presence of the thermal
gradient, and μ, ν = x, y, z stand for the coordinate axes. The
energy current JE is defined from the energy polarization
PE = ∑

i rihi as JE = i[HSW, PE ], where hi is composed of
the terms involving site i inHSW [51–53]. The spin current Jμ

SZ

is also defined in a similar manner. The spin polarization is in-
troduced as PSZ = ∑

i riSZ
i 
 ∑

in ri〈n;Ci|δSZ
i |n;Ci〉a†

inain +
const. when Sz

i commutes with HMF
i because the spin-orbit

coupling is not taken into account in Eq. (1). The conduc-
tivities are calculated using the Boltzmann equation with the
relaxation time approximation [3,42,54,55]. We have numer-
ically confirmed that the results are consistent with those
obtained by the Kubo formula [11,56].

First, we show the results of the two-sublattice MF approx-
imation for Eq. (1) on a square lattice, where the length of the
primitive translation vectors is set to be unity. The ground-
state MF phase diagrams without the interorbital hopping, i.e.,
at K = 0, have been already examined in Ref. [36]. In the
present calculations, we choose the exchange parameters as
(Js, Jx, Jy, Jz )/Js = (1, 0.5, 0, 0.1). Figure 1 shows the �z de-
pendences of the HS density n̄H and the spin and pseudospin
moments at K/Js = 0.1. We find the four phases, the uniform
LS, HS with the AFM order, and two-types of EI phases: the
NEI and magnetic EI (MEI) [57]. Here, the uniform and stag-
gard spin moments are introduced as S�

± = 1
2 (〈S�〉A ± 〈S�〉B)

with 〈S�〉A and 〈S�〉B being the moments on the sublattices
A and B, respectively. The pseudospin moments, τ x

�± and
τ

y
�±, are defined in the same manner. The LS (HS) phase

is characterized by n̄H = 0 (n̄H = 1) as shown in Fig. 1(a)
and n̄H continuously changes in the NEI and MEI phases.
In the HS phase, SX

− = 1, indicating the AFM order for SX

[Fig. 1(b)]. The MEI phase also possesses nonzero SX
− and

small FM SZ components. Accompanied by the spin canting,
τ x

X± takes a small value [Fig. 1(c)] in the MEI state while it
is zero at K = 0. On the other hand, in the NEI phase, only
τ x

Z± is finite, similar to the case with K = 0. We find the
phase boundaries are almost unchanged by the introduction
of K .

While the MF ground state in the NEI is not changed
qualitatively by K , we find the substantial change of the spin
excitation spectrum. As shown in Fig. 2(a), there are four exci-
tation modes in the NEI phase at K = 0. The low-energy two
gapless modes and high-energy two gapped modes correspond
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FIG. 1. (a) High-spin density n̄H , (b) spin moments S�
±, and (c)

pseudospin moments, τ x
�± and τ

y
�±, as functions of �z with the ex-

change parameters (Jx, Jy, Jz, K )/Js = (0.5, 0, 0.1, 0.1). The dashed
lines indicate the phase boundaries.

to the spin and orbital excitations, respectively [36]. To exam-
ine the spin dependence of the collective modes, we calculate
the imaginary part of the dynamical spin correlator SY X (q, ω)
[58]. Note that ImSY X (q, ω) = [S−+(q, ω) − S+−(q, ω)]/4,
where S± = SX ± iSY . This expression clearly indicates that
the positive (negative) spectral weight corresponds to the spin
excitation associated with a positive (negative) change of SZ .
Figure 2 shows the contour map of ImSY X (ω) and dispersion
relations of the collective excitations for several values of K
and �z. As shown in Figs. 2(a)–2(c), in the NEI phase with
�z/Js = −1.2, one of the spin excitation modes splits into
two by the introduction of K . These two modes are associated
with the positive and negative weights of ImSY X (q, ω). This
indicates that the spin splitting of the collective modes is
caused by the interorbital hopping, i.e., K , although the EI
state remains nonmagnetic [see Fig. 1(b)]. In the NEI state, the
uniform pseudospin moment for 〈τ x

Z 〉 is nonzero, resulting in
the effective magnetic field for SZ by the last term of Eq. (1).
This effective field does not induce any local spin moments

in the ground state but gives rise to the spin splitting in the
excited states [59].

We also find that the spin-split collective modes are soft-
ened while �z approaching the critical point between the NEI
and MEI phases, �critical

z 
 �z = 1.0312Js [Figs. 2(c) and
2(d)]. At this point, one of these modes is gapless at the M
point in the Brillouin zone with a quadratic dispersion. In the
MEI phase above �critical

z , and two gapless linear dispersions
with different velocities appear [36]. In the MEI phase, while
increasing �z, the low-energy weight of ImSY X (ω) turns from
positive to negative [Figs. 2(e) and 2(f)].

Keeping this in mind, let us examine spin transport prop-
erties in the EI phases when a thermal gradient is applied to
the system. Figure 3(a) shows the temperature dependence of
the spin conductivity κs in the NEI phase [60]. In the NEI
phase at �z/Js = −1.25 far from �critical

z , κs/τ is negative and
decreases with increasing temperature. This is understood as
follows. As shown in Figs. 2(b) and 2(c), the group velocity
of the collective mode with the negative weight of ImSY X (ω)
is larger than that with the positive weight around the �

point. This implies that the large group velocity of the spin
excitation decreasing SZ contributes dominantly to the spin
transport rather than a higher occupation of the lower branch,
and hence, κs is negative.

At �z/Js = −1.2, κs/τ turns to increase with increasing
temperature and its sign changes by the temperature evolution.
Further increase of �z enhances the spin conductivity strongly
in the high temperature region. At the critical point �critical

z ,
κs/τ largely increases proportional to temperature as shown
in the inset of Fig. 3(a). The peculiar temperature dependence
is attributed to the softening of the spin-split collective mode
at the M point as shown in Fig. 2(d). This mode is associated
with the positive ImSY X (ω), indicating the excitation with
raising SZ , and therefore, κs becomes positive near �critical

z . In
the MEI phase, our formalism is not applicable for calculating
κs [60] but we expect that κs changes to positive to negative
while increasing �z from �critical

z on the basis of the low
energy behavior of ImSY X (ω) shown in Figs. 2(d)–2(f).

To examine the conversion ratio from the thermal to spin
current, we calculate κs/κ , which does not depend on τ in the
present approximation. The results are shown in Fig. 3(b). At
�z/Js = −1.25, this quantity is negative but the sign change
is seen in the case close to �critical

z . While κs/κ approaches
a negative common value in the low temperature limit in the

FIG. 2. Contour plots of the imaginary parts of the dynamical spin correlator, ImSY X (ω), with δ = 0.1J at several parameters. Green lines
represent the excitation energies.
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FIG. 3. Temperature dependences of (a) the spin conductivity
κs and (b) the ratio κs/κ at several �z in the NEI phase with the
exchange parameters (Jx, Jy, Jz, K )/Js = (0.5, 0, 0.1, 0.1), where τ

is the relaxation time. The inset of (b) is its extended plot.

NEI phase, the different behavior is observed at �critical
z ; κs/κ

appears to diverge with decreasing temperature as shown in
the inset of Fig. 3(b).

Here, we discuss how to verify our theoretical proposal
in real materials. One of the candidates of EIs is the per-
ovskite cobaltite Pr0.5Ca0.5CoO3. This material exhibits a
metal-insulator transition at about 90 K and magnetic order-
ings have not been observed experimentally [61–63]. The Co
ions are expected to be trivalent and multiple spin states such
as LS (t6

2g) and HS (t4
2ge2

g) are energetically competing. It was
suggested that the NEI state with the spontaneous hybridiza-
tion occurs between dx2−y2 and dxy orbitals by first principles
calculations [27–29]. Therefore, the present two-orbital Hub-
bard model is a minimal model to capture the nature of the
EI state in the material. The space group of Pr0.5Ca0.5CoO3

is orthorhombic (Pnma) with the GdFeO3-type distortion in
both higher and lower temperatures [63–65]. The detailed
structure analysis suggested that the rotation of CoO6 octahe-
dra corresponding to the GdFeO3-type distortion is enhanced
with decreasing temperature. This distortion gives rise to the
intersite interorbital hopping between the dx2−y2 in the eg or-
bitals and dxy in the t2g orbitals as shown in Fig. 4. This effect
is incorporated as V in the two-orbital Hubbard model, which
is different from the previous studies [32–35]. By applying the
gauge transformation for the b orbital in the B sublattice, the
Hamiltonian is mapped onto the case with the uniform interor-
bital hopping and tatb < 0, which is nothing but the system
addressed by the present study. This transformation does not

FIG. 4. Schematic pictures of orbital configurations in the
GdFeO3-type distortion to understand the correspondence to the
present model. The p orbitals are also depicted on the coordinate
of the middle octahedra. The gauge transformation for the dxy orbital
to −dxy are applied to the octahedron surrounded by the red line. The
orange and green colors in the octahedra represent the positive and
negative d-p hybridizations, respectively. Transfer integrals between
the same and different orbitals are shown in the bottom.

affect the spin operators and eigenenergies, and therefore, the
results for the spin-split excitations and SSE are expected to be
observed in the real material Pr0.5Ca0.5CoO3 if the excitonic
order is realized.

As shown in Fig. 3(b), despite the absence of magnetic
orders and magnetic fields, the order of κs is close to that of κ

in natural units, which is similar to the case of ferromagnetic
Heisenberg models. Since the SSE mediated by the collective
excitations has been measured in ferromagnetic/ferrimagnetic
insulators such as iron-based garnets [6,7], we expect that
the spin current is observed when the EI state is realized
in the candidate material. Furthermore, in the iron-based
garnets, spin-dependent magnons were observed by inelastic
neutron scattering measurements [66]. Therefore, we believe
that the SSE and spin splitting in collective excitations can
be measured experimentally in candidate materials of the EI
state although its order parameter is a higher-order multipole
[27,36,37], which is difficult to be observed by conventional
probes.

In summary, we have proposed a mechanism of the spin
Seebeck effect in a nonmagnetic excitonic insulating state
by analyzing the effective model derived from the two-
orbital Hubbard model in the strong correlation limit. We
have revealed that the spin Seebeck effect originates from
the spin-split collective excitations, which is caused by an
internal effective field emerging from the excitonic order pa-
rameter. We have also suggested that these phenomena will
be experimentally observed in perovskite cobaltites with the
GdFeO3-type distortion.
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