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Conservation of angular momentum in an elastic medium with spins
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Exact conservation of the angular momentum is worked out for an elastic medium with spins. The intrinsic
anharmonicity of the elastic theory is shown to be crucial for conserving the total momentum. As a result, any
spin-lattice dynamics inevitably involves multiphonon processes and interaction between phonons. This makes
transitions between spin states in a solid fundamentally different from transitions between atomic states in a
vacuum governed by linear electrodynamics. Consequences for using solid-state spins as qubits are discussed.
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The problem of transfer of the angular momentum between
magnetic moments and a macroscopic body goes back to
seminal experiments of Einstein-de Haas [1] and Barnett [2].
The first established that the change in the magnetization
of a freely suspended body is accompanied by mechanical
rotation. The second demonstrated that rotation causes mag-
netization. Macroscopic explanation of these phenomena is
straightforward—based upon conservation of the total angular
momentum. Equally straightforward is microscopic theory of
spin-phonon processes developed in seminal papers of Van
Vleck [3]. Magnetoelastic Hamiltonians studied by classical
and quantum methods for specific materials ever since have
been written to reflect anisotropy of the crystal lattice. Due
to the lack of rotational symmetry they do not conserve the
total angular momentum. Until recently this inconsistency
was swept under the rug by correctly assuming that any unac-
counted change in the angular momentum would be absorbed
by the whole body. Attempts to demonstrate this in a rig-
orous manner [4–6], while conceptually valuable, have been
mathematically cumbersome with no clear consequences for
experiments.

In recent years this problem received renewed attention due
to the emergence of spintronics and nanoelectromechanical
devices, as well as due to the prospect of developing spin-
based quantum computers. Universal parameter-independent
nature of spin-lattice relaxation arising from the conservation
of the total angular momentum has been demonstrated [7].
Transfer of the angular momentum from spins to mechanical
degrees of freedom in nanomechanical oscillators has been
studied theoretically [8–13] and experimentally [14–17]. The
division of the phonon angular momentum into orbital and
spin parts was suggested [18] and further explored in applica-
tion to problems of spin relaxation [19,20] and spin transport
[21]. The concept of angulon, a quasiparticle carrying an
angular momentum, initially introduced to describe properties
of molecular impurities in a superfluid [22], has been extended
to magnetic impurities in solids [23]. The physics of the
Einstein-de Haas effect in magnetic insulators has been re-
cently revisited within a model that decouples rotations from

vibrations and separates variables responsible for microscopic
and macroscopic mechanical torques [24].

In Ref. [19] we demonstrated conservation of the angular
momentum by spin-lattice interaction for a specific quantum
problem of a relaxing spin. The general case turned out to be
subtler even at the classical level. It involves anharmonicity
of the elastic lattice as has been emphasized in Refs. [19,20].
It will be rigorously solved here and will elucidate the fact
that spin-phonon processes are fundamentally different from
spin-photon processes due to the intrinsic nonlinearity of the
elastic theory as compared to electrodynamics.

We begin with the underappreciated derivation of the con-
servation of angular momentum in a conventional elastic
theory that is not easy to find in textbooks. The expression
for the angular momentum of the elastic solid that is linear on
a small deformation u(r, t ) is:

L(0) =
∫

d3r(r × p). (1)

Here p(r, t ) = ρu̇(r, t ) is the momentum density, with ρ be-
ing the mass density of the solid. The time derivative of this
expression yields:

L̇(0) =
∫

d3rρ(r × ü). (2)

The second time derivative of u in this equation satisfies the
Newton’s equation,

ρ
∂2uα

∂t2
= ∂σαβ

∂rβ

, (3)

with the force on the right-hand side being the gradient of
the stress tensor σαβ = δH/δeαβ . Here H is the Hamiltonian
of the system and eαβ = ∂uα/∂rβ is the strain tensor. Substi-
tuting Eq. (3) into Eq. (2) and integrating by parts under the
assumption of zero elastic stress at the free boundary of the
body, we obtain

L̇(0)
α =

∫
d3rεαβγ rβ

∂σγ δ

∂rδ

= −
∫

d3rεαβγ σγβ, (4)
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where summation over repeating indices is assumed with
εαβγ being an absolutely antisymmetric unit tensor of third
rank (Levi-Civita symbol). In the linear theory of elasticity
that ignores local internal torques associated with spins, the
Hamiltonian is

H =
∫

d3r

(
1

2
ρu̇2 + 1

2
Cαβγ δuαβuγ δ

)
(5)

with uαβ = 1
2 (eαβ + eβα ) and tensor Cαβγ δ reflecting the sym-

metry of the crystal lattice. This makes the stress tensor σγβ in
Eq. (4) proportional to the strain (Hooke’s law) and symmetric
with respect to the transposition of γ and β. The product
of the antisymmetric tensor εαβγ and the symmetric tensor
σγβ in the last of Eq. (4) is automatically zero, which makes
L̇(0) zero and proves conservation of the angular momentum
in the limit linear on deformations.

This, however, is not the end of the story if one recalls the
exact definition of the symmetrized strain tensor,

uαβ = 1
2 (eαβ + eβα + eγαeγ β ), (6)

that follows from the analysis [25] of how deformations
change distances between two points in the elastic medium:

dl ′2 = dl2 + 2uαβdrαdrβ. (7)

With that definition of uαβ one obtains

σαβ = δH
δeαβ

= δH
δuαβ

+ eαγ

δH
δuγ β

. (8)

The first tensor in this expression is symmetric but the second
is not, even for an isotropic body, which makes L̇0 in Eq. (4)
nonzero. The solution to this problem comes from the realiza-
tion that the full expression for the angular momentum in the
elastic medium is

L =
∫

d3r(r + u) × p =
∫

d3rρ(r + u) × u̇. (9)

The term quadratic on u, that Zhang and Niu [18] associated
with the phonon spin, comes from the same necessity to
distinguish between coordinates of atoms before and after de-
formation that leads to Eq. (6) via Eq. (7). The time derivative
of the angular momentum now becomes

L̇α = −
∫

d3r(εαβγ σγβ + εαβγ eβδσγ δ ). (10)

Substituting Eq. (8) into Eq. (10) and working out tensor
products that contain zero convolutions of symmetric and anti-
symmetric tensors, one obtains L̇ = 0, which proves the exact
conservation of the angular momentum in the conventional
nonlinear elastic theory to all orders on the deformation. We
shall now include in the theory a single atomic spin located at
a point r = r0. This immediately takes us outside the frame-
work of the conventional elasticity because spins, as they
rotate, generate internal torques (see Fig. 1) that are explicitly
neglected by the elastic theory. As we shall see, however, this
problem can be fixed in the same manner as the linear theory
of elasticity was fixed before.

Consider for certainty a uniaxial spin Hamiltonian

HS = HSδ(r − r0), HS = F (n · S), (11)

FIG. 1. Schematic illustration of the elastic twist due to the reac-
tion of the atomic lattice to a rotating spin.

where F is an arbitrary scalar function of its argument, e.g.,
F = −D(n · S)2, with n being the magnetic anisotropy axis
in the nondeformed state. Elastic deformations of the body
change the direction of the anisotropy axis n. Local rotation
by a small angle δφ = 1

2∇ × u changes n to

n′ = n + δφ × n + 1
2δφ × (δφ × n) + · · · . (12)

In the first order on deformation it results in the spin-lattice
interaction of the form

δHS = ∂F

∂n
· (δφ × n). (13)

It is difficult, however, to develop a rigorous approach in all
orders on δφ needed to prove the exact conservation of the
angular momentum.

Below we adopt a different approach by noticing that the
anisotropy axis n is determined by the orientation of local
crystallographic axes. Under deformation it rotates together
with any vector r connecting to points in a solid separated by
a distance l = |r| according to

n = dr
dl

⇒ n′ = dr′

dl ′ , (14)

where

dr′
α = drα + duα = drα + eαβdrβ (15)

and dl = |dr| and dl ′ = |dr′| are the lengths of the infinites-
imal vector dr before and after deformation, related through
Eq. (7). From these formulas one obtains

n′
α = dr′

α

dl ′ = nα + eαβnβ√
1 + 2uδηnδnη

, (16)

which is a closed form of Eq. (12). With the replacement
of n by n′ the Hamiltonian in Eq. (11) becomes the ex-
act spin-lattice Hamiltonian accounting for all orders on the
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deformation,

HS = F (n′ · S), (17)

where n′ is given by Eq. (16).
The spin contribution to the mechanical stress tensor is

σ
(S)
αβ = δHS

δeαβ

= δHS

δn′
γ

∂n′
γ

∂eαβ

. (18)

After a straightforward algebra we get with the help of Eq. (6)

∂n′
α

∂eβγ

= (δαβ − n′
αn′

β )nγ√
1 + 2uδηnδnη

. (19)

Substituting this into Eq. (18) one obtains from Eq. (10) the
spin contribution to the time derivative of the mechanical
angular momentum:

L̇(S)
α = −εαβγ (δβδ + eβδ )

∂ĤS

∂n′
η

∂n′
η

∂eγ δ

. (20)

With the help of Eq. (11), it can be rewritten as

L̇(S)
α = −F ′(n′ · S)Sηεαβγ (δβδ + eβδ )

∂n′
η

∂eγ δ

, (21)

where F ′(x) = dF/dx. Equations (16) and (19) yield

(δβδ + eβδ )
∂n′

η

∂eγ δ

= n′
β (δγη − n′

ηn′
γ ). (22)

Dropping the zero convolution of symmetric and antisymmet-
ric tensors we obtain from Eq (21)

L̇(S)
α = −F ′(n′ · S)Sηεαβγ n′

β (δγη − n′
ηn′

γ )

= −F ′(n′ · S)εαβγ n′
βSγ . (23)

The equation of motion for the spin is

h̄Ṡ = −
[

S × δHS

δS

]
(24)

or in the tensor form

h̄Ṡα = −εαβγ Sβ

δHS

δSγ

. (25)

Using Eq. (11), one can write it as

h̄Ṡα = F ′(n′ · S)εαβγ n′
βSγ . (26)

Comparing Eqs. (23) and (26) we immediately see that the
time derivative of the total angular momentum, J = h̄S + L(S)

is zero. This concludes derivation of the exact conservation
of the total angular momentum, spins + lattice, in the full
nonlinear elastic theory with embedded spins. In that deriva-
tion we did not use the explicit form of the function F (n · S)
representing the spin Hamiltonian. The same derivation will
apply to any form of the spin-lattice interaction.

One observation that follows from our derivation is that
conservation of the total angular momentum can only be re-
covered after one accounts for all nonlinear terms in the elastic
and magnetoelastic parts of the Hamiltonian. This must have
consequences for quantum theory of spin-lattice interactions

as well. In quantum mechanics deformations are quantized
according to

û(r) =
√

h̄

2ρV

∑
kλ

ekλ√
ωkλ

(eik·rakλ + e−ik·ra†
kλ), (27)

where ωkλ and ekλ are frequencies and polarizations of
phonons, V is the volume of the body, and a†

kλ, akλ are phonon
operators of creation and annihilation.

In the linear elastic theory the strain tensor uαβ = 1
2 (eαβ +

eβα ) is linear on these operators. The elastic Hamiltonian (5)
is quadratic on phonon operators while the spin-lattice Hamil-
tonian in the rotational approximation of Eq. (13) is linear
on phonon operators. Consequently, the linear spin-lattice
theory that describes absorption and emission of phonons is
similar to the theory of atomic transitions in electrodynamics.
Multiphonon processes arise from higher orders of perturba-
tion theory on the linear spin-phonon interaction.

This changes when one accounts for nonlinear (anhar-
monic) terms needed to conserve the angular momentum. The
exact strain tensor (6) contains terms that are quadratic on
deformation and thus quadratic on phonon operators. This
contributes terms up to the fourth order on phonon operators
to the elastic Hamiltonian (5). As to the exact spin-lattice
Hamiltonian, according to Eqs. (17) and (16) it contains all
orders of the deformation and, thus, all orders of the phonon
operators.

Consequently, multiphonon processes and interaction be-
tween phonons, required by the conservation of the total
angular momentum, inevitably enter the quantum problem
even in the first order of the perturbation theory on spin-
phonon interaction. The intrinsic nonlinearity of the elastic
theory makes the dynamics and manipulation of an atomic
spin in a solid fundamentally different from the dynamics
and manipulation of the atomic states in vacuum. The latter
are described by the linear electrodynamic theory that does
not require multiphoton processes for the conservation of the
angular momentum.

At low temperature, contribution of multiphonon processes
to a single-spin relaxation, arising from higher orders of the
perturbation theory on linear spin-phonon interaction and in
all orders on the nonlinear spin-phonon interaction, would be
proportional to higher powers of the spin-lattice coupling and,
therefore, would be small. For that reason, our findings are not
affecting the single-spin relaxation rates computed for various
materials since the first paper on this subject by Van Vleck [3].
They are important in the context of spin-lattice relaxation in
the entire system in order to account for the transfer of the
angular momentum from a single spin to a solid, e.g., for the
study of magnetomechanical processes.

High nonlinearity of this many-body problem makes it
difficult to establish with certainty how strongly the phase
of the wave function and decoherence of quantum spin states
are affected by their entanglement with the infinite number of
phonon states mandated by the conservation of the angular
momentum in a macroscopic body. The prospect of using
spins in a 3D solid as qubits [26] may depend on the answer to
this question. The reduction of the number of mechanical de-
grees of freedom in a nanocantileverlike setup [14–17] may be
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beneficial in that respect. Similar argument applies to qubits
based upon nano-SQUIDs [27], where angular momentum is
generated by the superconducting current [28].
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