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Intrinsic and extrinsic tunability of Rashba spin-orbit coupled emergent inductors
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The emergent induction of spiral magnets that was proposed [N. Nagaosa, Jpn. J. Appl. Phys. 58, 120909
(2019)] and recently demonstrated [T. Yokouchi et al., Nature (London) 586, 232 (2020)] is shown to be further
extended by a comprehensive treatment of the Rashba spin-orbit coupling and the electron spin relaxation that
affect the underlying processes of spin-transfer torque and spinmotive force. Within adiabatic approximation,
we show that the output voltages are widely altered intrinsically via the Rashba effect whereas extrinsically via
the nonadiabatic correction due to the spin relaxation and sample disorder. The findings respectively clarify the
origins for the amplitude modulation and sign change of the emergent inductance with tunability by electrical
gating and careful sample preparation.
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Introduction—The “s-d” exchange coupling is a basic fac-
tor to control spin-dependent transport and magnetization
dynamics in ferromagnetic conductors, owing to its ability to
transfer angular momentum and energy between conduction
spin and magnetization texture. Among the spintronics effects
caused by this quantum mechanical coupling, one of the most
extensively studied is spin-transfer torque (STT) [1,2] that
enables an efficient manipulation of the magnetization by an
electric current [3]. The magnetization dynamics, in turn, can
induce an electromotive force (EMF) via the same coupling
[4,5], which is known today as spinmotive force (SMF) [6].
SMF offers a unique way of detecting dynamical magnetic
textures.

Recently, an effect arising from sequential action of STT
and SMF in helical magnets has been proposed in Ref. [7],
which offers a new principle for an inductor. When mag-
netization dynamics is driven by STT due to time-varying
electric current, the SMF mechanism leads to an EMF as a
counteraction to the applied current, which can, under certain
conditions, be interpreted as an inductance. This inductance
of quantum mechanical origin has been coined as emergent
inductance [7], and experimentally demonstrated in a cen-
trosymmetric helical magnet Gd3Ru4Al12 [8]. In contrast to
a classical inductance of a solenoid coil L = μn2lA, where
μ, n, l, A are the permeability, turn density, length, and
cross-section of the coil, respectively, the emergent inductance
Ls is inversely proportional to A. Therefore, the emergent
inductor is advantageous for nanoscale device applications as
its magnitude increases with decreasing device cross-section
[7,8], in contrast to the classical inductance, breaking a hurdle
for manufacturing small-size inductors with a large enough
effect.

In the meantime, another fundamental and important factor
in spintronics, besides the exchange coupling, is spin-orbit
couplings (SOCs) [9]. The concept of STT has been extended

to spin-orbit torque (SOT) by including the effects of SOCs
[10,11]. While the original STT is already implemented in
commercial memory devices [12], the SOT is expected to play
a major role in next-generation technologies [13]. In parallel
to these studies on SOT, it has been shown that the SOCs give
rise to additional contributions to the SMF [14–17]. In par-
ticular, helical magnetic textures such as spin spiral are often
stabilized by the interplay of symmetric exchange interaction
and Dzyaloshinskii-Moriya interaction (DMI), the latter of
which stems from the SOC in the electron system. In those
cases, the SOT and SOC-induced SMF are expected to be
present. Furthermore, SOCs are an origin of the electron spin
relaxation process, which leads to the so-called β-terms in the
STT and SMF [18–20]. While these SOC effects sometimes
cause drastic change in the spin transport in magnetization
textures the previous discussion [7,8] has been limited to the
use of adiabatic STT and SMF free from the SOCs.

In this letter, we scrutinize the role of SOCs in Ls by taking
account of the SOC effects in the STT and SMF processes. We
identify two key factors that significantly modify Ls: one is the
intrinsic origin via the STT and SMF directly augmented by
the Rashba effect, and the other is the extrinsic origin associ-
ated with the spin relaxation and sample disorder. The former
is intrinsic because it reflects the electronic band structure,
and it can be tuned by electrical gating, thus suggesting the
possibility of electrical control of Ls. The latter, on the other
hand, is extrinsic for the coupling of the spin to the external
degrees of freedom, and it is shown to allow Ls to change
its sign. This may partially explain the negative Ls observed
in Ref. [8], while the positive sign had been predicted by
Ref. [7].

Current-driven dynamics of spiral magnet—We consider
a thin-film magnetic strap extending along the x direction,
where the magnetization is uniform in the y–z plane. We set
the normal direction to the film the z axis as shown in Fig. 1(a).
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FIG. 1. A set-up of the present study. (a) Schematic view of the
device. An ac current jω is applied along the x axis in a spiral magnet
thin film with the film normal being along the z axis. The bold arrows
show the unit vectors of the magnetization �m projected in the x–y
plane (b), and in the x–z plane (c), respectively. The light gray objects
indicate the magnetization configuration slightly tilted away from the
spiral plane. The Euler angles (θ , φ) and the collective coordinates
(X , �) are also specified. (d) The phase space energy landscape
for the “particle” (black dot) representing the spiral dynamics. The
curvature of the energy originates from the pinning and magnetic
anisotropy for X and � respectively.

The broken inversion symmetry at the interface leads to the
appearance of DMI. We assume that the magnetic energy U
is given by U = ∫

d3r[As(∇ �m)2 + D �m · {(�ez × ∇x�ex ) × �m}],
where As(>0) is the exchange stiffness, D is the DMI
constant, �ei is the unit vector along the i(=x, y, z) axis,
and �m = (sin θ sin φ, cos θ, sin θ cos φ) is the classical unit
vector representing the magnetization direction. The above
form of energy U can stabilize Néel-type spiral (cycloidal)
structures; θ = π/2 and φ = cqx, i.e., �m(x) = �ez cos (cqx) +
�ex sin (cqx), as depicted in Figs. 1(b) and 1(c) with c ≡
D/|D| = ±1 characterizing the chirality of the spiral and the
wave number q = |D|/2As.

When an electric current is applied along the x axis, the
spiral is driven into motion due to the STT and SOT effects.
We adopt an ansatz that the dynamical spiral structure is ob-
tained by replacing the Euler angles φ = cqx → cq[x − X (t )]
and θ = π/2 → π/2 − �(t ) [21,22]. Here we introduce the
collective coordinates, X and �, that describe, respectively,
the translational displacement of the spiral along the x axis
and tilting away from the easy (x–z) plane [Figs. 1(b) and
1(c)], composing a canonical conjugate pair for the dynamical
system [21]. Note that U = AlKani sin2 � for the spiral where
A and l are respectively the cross section area in the y–z plane
and length along the x axis of the sample [Fig. 1(a)]. A hard
axis anisotropy arises from the DMI as Kani = D2

2As
.

The current-induced magnetization dynamics are in gen-
eral determined from the Landau-Lifshitz-Gilbert (LLG)
equation with STT and SOT included. Here we focus on the
SOT originating from the Rashba SOC and assume that the
STT and SOT are derived based on the so-called ferromag-
netic Rashba Hamiltonian for a conduction electron given by
[23,24]

H = �p2

2me
+ J �σ · �m(x, t ) + ηR(σx py − σy px ), (1)

where me, �p, and �σ are the electron’s mass, canonical momen-
tum, and Pauli matrices of spin operators, respectively. The
second term is the exchange coupling to the magnetization
texture �m(x, t ) with J (>0) the coupling energy and the last
term is the Rashba SOC with ηR the Rashba parameter. in the
unit of velocity. Based on U and H , a Lagrangian L and a
Rayleigh function R for the LLG equation are now given by

L = μ0MS

γ

∫
d3x[(1 − cos θ )Dtφ + γ hR cos θ ] − U, (2)

R = μ0MS

γ

∫
d3x

[α

2

(
Dβ

t �m
)2 + βγ hR( �m × �ey) · ∂t �m

]
, (3)

where γ is the gyromagnetic ratio, μ0 is the magnetic
constant, MS is the saturation magnetization, and α is the
Gilbert damping constant. The STT effects are incorporated in
Dt = ∂t + u∇x,D

β
t = ∂t + β

α
u∇x with u = − h̄γ P

2eμ0MS
j, where

e(>0) is the elementary electric charge, P is the spin polar-
ization of the electric current, β is a dimensionless constant
characterizing the nonadiabatic electron spin dynamics, and j
is the applied electric current density. The SOT is described
by the parameter hR in the units of a magnetic field, the
magnitude of which is evaluated [10,14] as hR = ηRmeP

eμ0MS
j.

We here introduce a pinning potential for translational
motion of the spiral, which may originate from disorder, by
replacing U → Utot = U + Upin. For simplicity, we assume
for Upin a quadratic potential around X = 0, which is justified
when the displacement of the spiral is restricted around the
pinning position [25]; Upin = Alwpinq3X 2/2, where wpin is a
phenomenological constant. Now the collective coordinates
(X , �) comprise a dynamical system of a particle trapped in a
harmonic potential. Due to Kani, it acquires an effective mass

(per unit area and unit length), ms = ( μ0MS

γ
)
2 q2

2Kani
, correspond-

ing to the Döring mass of a domain wall [26,27]. Figure 1(d)
shows the total energy landscape in the phase space spanned
by (X , �) for the present system. The Euler-Lagrange equa-
tions, d

dt
δL
δξ̇

− δL
δξ

= − δR
δξ̇

with ξ̇ ≡ dξ

dt for ξ = X and �,
lead to

−α∂t� + cq cos �∂t X = cquR cos � + qνani

2
sin 2�, (4)

αq cos �∂t X + c∂t� = βquR cos � − q2νpin
X

cos �
. (5)

We have introduced the “velocities,” νpin and νani, character-
izing the pinning strength for X and the anisotropy for � due
to the DMI, respectively, by νpin = γwpin

μ0MS
and νani = γ |D|

μ0MS
. The

effects of the electric current are encapsulated in the parameter
uR = u − cγ hR/q = (1 + cqR/q)u, with qR = 2meηR/h̄.

For � � 1, an approximate solution of Eqs. (4) and (5) in
the Fourier form is given by(

Xω

�ω

)
=

(
icωq−1 νani + iαωq−1

−qνpin − iαω icω

)(
c
β

)
uRω

�
, (6)

where � = (νani + iαωq−1)(qνpin + iαω) − ω2q−1. When
the frequency ω is sufficiently low compared with the char-
acteristic to the magnetization dynamics as ω � qνpin and
ω � βqνani, the leading terms of the solution read

Xω � β

qvpin
uRω, �ω � − c

vani
uRω. (7)
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Note that the above solution is only valid when both νpin and
νani are nonzero. Notice also that it is X and � themselves,
not their velocities, that are proportional to the electric current
density j. This implies that a dc current cannot drive persistent
magnetization dynamics, where the spiral structure reaches
some static state determined by Eq. (7). This is essential for
the spiral magnet to be interpreted as an “inductor” because,
as we will see below, the SMF depends on the temporal
derivative of the magnetization, which we saw is virtually zero
when the electric current is not changing in time.

Electromotive force induced by spiral dynamics—In the fol-
lowing, we discuss the SMF generated by the current-driven
spiral dynamics. First, we summarize the emergent electric
field (also known as spin electric field) appearing when the
magnetization changes in time. Equation (1) leads to the spin
electric field E± = E±

0 + E±
R along the spiral axis, i.e., the x

axis, where the upper (lower) sign corresponds to the electrons
with majority (minority) spin [17], and

E±
0 = ± h̄

2e

(
�m × ∂ �m

∂t
+ β

∂ �m
∂t

)
· ∇x �m, (8)

E±
R = ∓ h̄qR

2e

(
∂ �m
∂t

− β �m × ∂ �m
∂t

)
y

, (9)

where ηR has been assumed to be time-independent [16]. Note
that β is the same as that appears in the STT reflecting the re-
ciprocal relationship [19,20]. E±

0 is the SOC-free spin electric
field, arising when �m varies in both time and space. E±

R , on
the other hand, is the SOC-induced part. In contrast to E±

0 , the
SOC-induced field E±

R appears in the spatially uniform �m.
The EMF E due to E±, i.e., SMF, is defined by E =∫ l

0 dxPE+. The spin polarization P appears because the spin
electric field changes its sign when it acts on the majority-
spin and minority-spin electrons. Using the spiral dynamics
solution (7) given above, one obtains in the presence of an
ac electric current, Eω = −Ph̄cql

2e (1 + cqR

q )iω(�ω + βcqXω ) �
Ph̄ql

2e (1 + cqR

q )2( 1
νani

− β2

νpin
)iωuω. It is clearly seen that the EMF

is proportional to the time-derivative of the electric current
density. The spiral magnet, therefore, can behave as an induc-
tor when it is implemented in an electronic circuit. While the
SMF in a chiral helimagnet was first discussed in Ref. [28],
there the SOC effects and β-term have not been considered,
and the field-induced magnetization dynamics was discussed.

By rewriting E into the form E = LsdI/dt with I = jA,
the emergent inductance is identified as

Ls = �int�extLs0, (10)

where we defined �int = (1 + cqR/q)2, �ext = 1 −
β2 jani/ jpin, and Ls0 = πP2 h̄l

2eλA jani
, with the spiral half pitch

λ = π/q and two threshold current densities, jani = 2e|D|/h̄,
jpin = 2ewpin/h̄, being introduced. Equation (10) is the key
result.

Tunability of the emergent inductance—Equation (10) re-
veals an intriguing tunability of the emergent inductance via
intrinsic and extrinsic mechanisms of the SOC effects repre-
sented by �int and �ext, respectively. The first factor, �int,
is directly associated with the Rashba SOC parameter being
intrinsic to the electronic band structure of the present in-
version broken system [29]. If one can prepare a spiral of

FIG. 2. The contour plot of Eq. (10) in the unit of �intLs0 as a
function of β2 jani and jpin. The white diagonal line, β = ( jpin/ jani )1/2,
divides positive and negative regions of the emergent inductance Ls.

q ∼ (20 nm)−1 in spite of qR ∼ (3.5 Å)−1 evaluated from
the prominent value h̄ηR = 10−10eV · m for the ferromagnetic
multilayers [11], Ls will be significantly enhanced by the fac-
tor �int ∼ 3 × 103. Moreover, it is possible to tune the Rashba
parameter and thus qR by electrical gating [9]. This tunability
can, therefore, invent a field-effect variable inductance.

The second factor, �ext, arises through the spin relaxation
process represented by the β-corrections in Eqs. (5)–(9) as
well as the extrinsic pinning, wpin, being irrespective of the
presence of the Rashba SOC. Interestingly, Ls becomes neg-
ative for ( jpin/ jani )1/2 < β as shown in Fig. 2. Although β

is usually small (β � 1), the condition is not unrealistic as
jpin/ jani � 1 can be satisfied by preparing a clean sample
with the large-Kani materials. While we omit the crystalline
anisotropy in this work and Kani solely comes from the DMI
the former would also enhance jani. This may partially explain
the recently observed negative emergent inductance [8].

Each effect is factorized in Eq. (10), meaning that the mod-
ification does not spoil the attractive devise-size dependence
of Ls and that the effects can be tuned independently.

Discussion—Let us compare the essential features obtained
above with those of the original form, Ls0, derived in Ref. [7],
which can be recovered by limiting qR, β → 0, in Eq. (10).
Ls is inversely proportional to the cross-sectional area, A, as
before [7,8]. This is because both STT and SMF, and their
SOC counterparts as well, are proportional to the electric
current density, j, while the classical electromagnetic induc-
tion depends on the total current, I = jA. It was claimed
in Ref. [7] that materials with a shorter spiral pitch, 2λ,
(larger q) were favorable to have efficient emergent induc-
tors, providing a guiding principle for experiment [8]. This is
analogous to the ordinary coil inductance that is proportional
to the squared turn number density, L ∝ n2. On the other
hand, q (or λ) dependence in Eq. (10) disappears provided
that qR = β = 0 since both q and jani originate from the same
DMI, canceling out in the present framework, i.e., the result
is model-dependent. When qR and β are nonzero Ls exhibits
more complex q dependence. The chirality c just enters in �int

along with the Rashba wavenumber qR. If qR is correlated
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with the DMI the result does not depend on the chirality
and any destructive interference effect due to multi-domain
fragmentation is absent as pointed out in Ref. [7]. More
specifically, when one follows the chiral derivative approach
[30], the DMI constant is related to the Rashba SOC as D =
2qRAs. In this case, one arrives at qR ≡ cq, and the universal
result �int = 4. To overcome this limit, disentangling qR with
q is desired. Although the relation might be oversimplified it
has been proposed that the DMI constant is proportional to
the exchange stiffness [31–33] and that was confirmed exper-
imentally [34]. The overall sign of E is consistent with the
definition of the inductance; the inductance is positive when
the induced EMF, either due to the ordinary electromagnetic
induction or the SMF, is opposed to the externally applied
voltage. As clarified above the physical origin of negative Ls

is ultimately the β-correction to the SMF, which has never
been observed as a dc response and was omitted in Ref [7].
While the nonadiabaticity and its equivalent contributions
arise from many origins [35], it is convenient to express it as
β = h̄

2Jτsf
, where τsf is the spin flip relaxation time [16]. It can

be further correlated to the SOC parameter within the model
(1) as 1/τsf ∝ q2

Rτ , with τ the momentum relaxation time
when the D’yakonov-Perel mechanism in inversion symmetry
broken systems [36] dominates. The factor P2 in Ls reflects
the fact that the emergent inductor works as a back-reaction to
magnetization dynamics induced by applied currents, i.e., it
relies on charge-to-spin and spin-to-charge conversions with
the efficiency P in each process. The spin polarization in
a slowly varying magnetization texture is well characterized

by P = σ+−σ−
σ++σ−

with the spin dependent conductivities σ± for
majority (+) and minority (−) spin of a uniform system [3].
The magnitude is roughly estimated by P ∼ J/εF with εF the
Fermi energy. It should be noted that the present approach
assumes the adiabatic spin transport in slowly varying mag-
netization and the results are valid for a long wave length
regime, q � kF, with kF the Fermi wave number. Extending
the analysis to an atomistically narrow spiral system, q ∼ kF,
is a valuable open problem [37].

In summary, we have clarified the effects of the Rashba
spin-orbit coupling and spin relaxation on the emergent in-
ductor of spiral magnets. The results are natural extensions
of the original work [7,8] while we have unveiled a richer
variety of materials dependence that might be tuned by elec-
trical gating, materials design, and careful sample preparation.
Especially, we have pointed out the nonadiabaticity and ex-
trinsic pinning effect are crucial to have a negative emergent
inductance. The knowledge would offer a better understand-
ing of the physics of emergent inductors, propelling further
development.

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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