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Deterministic chaos and fractal entropy scaling in Floquet conformal field theories
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In this Letter, we study two-dimensional Floquet conformal field theory, where the external periodic driving is
described by iterated logistic or tent maps. These maps are known to be typical examples of dynamical systems
exhibiting the order-chaos transition, and we show that, as a result of such driving, the entanglement entropy
scaling develops fractal features when the corresponding dynamical system approaches the chaotic regime. For
the driving set by the logistic map, the fractal contribution to the scaling dominates, making entanglement entropy
a highly oscillating function of the subsystem size.
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The concept of Floquet driving keeps attracting consider-
able interest in different areas of quantum many-body theory
since it provides a powerful approach to the controllable ma-
nipulation of the phases of matter. In the study of topologically
protected states of matter [1,2], many-body localization [3,4],
and thermalization [5,6], it was shown to be a tool for both
externally tuning conventional phase transitions [7] and engi-
neering novel phases that are nonexistent in equilibrium [8].

A natural playground to address the dynamics of peri-
odically modulated correlated systems is the framework of
Floquet conformal field theories (CFTs). Recently, a wide
class of Floquet modulated two-dimensional (2D) CFTs has
been proven to be exactly solvable [9–11]. In the proposed
setting, one drives the system by periodically interchanging
two Hamiltonians, namely, the canonical Hamiltonian of 2D
CFT on a strip, and its deformation. While originally the
particular case of the so-called sine-square deformation (SSD)
has been considered [9,12], later on, it was realized that the
dynamics of inhomogeneous CFT [13–16] is exactly solvable
for general deformations [17,18]. Since already in the simplest
SSD case, the driving leads to nontrivial energy flows in
the system causing the localization of energy density, whose
pattern resembles black-hole-like structures [10,11,19], it is
tempting to exploit the approach in its full generality and in-
vestigate what types of unconventional emergent phenomena
can occur in Floquet driven systems.
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To proceed along this line, one should bear in mind that
the Floquet theory as a branch of mathematics can be viewed
as a part of a more general theory of classical dynamical
systems [20–22]. In previous works [9,10], the following
correspondence between driven two-dimensional conformal
field theories and dynamical systems has been established
implicitly:

Evolution of a deformed 2D CFT

�
Holomorphic dynamics of iterated maps

Dynamical systems defined by the iterative composition of
simple maps are known to exhibit chaos, bifurcations, and
self-organization phenomena. For many standard choices of
the holomorphic maps, the evolution of the corresponding dy-
namical system generates fractals. Fractals, which are objects
of noninteger dimension, have intriguing nonsmooth behavior
and can appear even in the dynamics of seemingly regular
structures. A canonical example of a fractal is the Julia set
that can emerge as the spectrum of quasiperiodic (the famous
Hofstadter butterfly) or self-similar potentials [23–25]. In fact,
the emergence of fractals [26] is commonplace for a general
choice of iterated functions. Many studies are devoted to
understanding fractal structures in cold-atom systems, topo-
logical insulators, mesoscopic systems, etc. [27–34].

Treating the Floquet driving of a CFT as a dynamical
system, which can manifest chaotic or fractal properties on the
level of map iterations, does not evidently correspond to the
common approach normally taken in quantum chaos theory
[35,36]. Hence it is interesting to elucidate the connection
between chaotic dynamics in quantum systems and the more
classical theory of dynamical systems. In this Letter, we report
that periodic Floquet modulation based on a certain choice
of iterated holomorphic maps can evoke fractal patterns of
quantum correlations in the driven state. Namely, it leads
to the emergence of an exotic class of quantum states with
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a fractal scaling law of entanglement entropy. To achieve
that, we consider CFT deformations that can be described in
terms of dynamical systems generated by either logistic or
tent maps. Both these maps are extremely simple: The tent
map is a discontinuous linear function and the logistic map
is a quadratic function. Still, they lead to highly nontrivial
dynamics exhibiting a transition to the regime of deterministic
chaos, irregular dynamics governed by deterministic laws that
are highly sensitive to the initial conditions [37].

Following the proposal of Refs. [9,38], we start with a
theory defined on the strip of width L in the complex plane,

H =
∫ L

0

dx

2π
[ f (w)T (w) + f (w̄)T̄ (w̄)], (1)

where w = τ + ix, x ∈ (0, L).1 Here, T (w) and T̄ (w̄) are
the holomorphic and antiholomorphic components of the
stress-energy tensor correspondingly, and f (w) defines the
deformation, with f (w) = 1 corresponding to the undeformed
CFT.

To introduce the Floquet driving, we first perform a con-
formal map from the strip onto the complex plane with a slit
by

z = exp

(
2π

L
w

)
, (2)

and then make change of variables χ = χ (z),

χ (z) = exp

(∫
dz

z f (z)

)
, (3)

bringing (1) to the uniform Hamiltonian [10],

H = 2π

L

∫
C

χ

2π i
T (χ )dχ + c.c. + · · ·, (4)

where a constant term resulting from the transformation is
omitted. In these coordinates, the Hamiltonian evolution in
Euclidean time τ is given simply by the dilatation transfor-
mation χ → λχ with λ = e

2π
L τ (throughout the rest of this

Letter, we take L = 1). In z coordinates, this implies that
the evolution in Euclidean time for some τ governed by the
deformed Hamiltonian (1) reduces to a change of variables
z1(z) obeying the identity

χ (z1) = λχ (z), (5)

which is the Schröder spectral functional equation from the
theory of dynamical systems [39]. The Hamiltonian evolution
for time nτ is then given by the composition

zn(z) = (z1 ◦ z1 · · · ◦ z1)︸ ︷︷ ︸
n times

(z). (6)

From this, it readily follows that the Floquet driving of a CFT,
when the system Hamiltonian is periodically swung with time
step τ , can be described by alternating the composition of two
different functions z1(z) and z̃1(z),

zn(z) = (z1 ◦ z̃1 · · · ◦ z1)︸ ︷︷ ︸
n times

(z), (7)

1After an analytical continuation, x would be the spatial coordinate.

where each of the functions corresponds to its own deforma-
tion f (z).

We will be working with two dynamical systems defined
by the logistic map

zlog
1 (x) = αx(1 − x), (8)

and the tent map

ztent
1 (x) =

{
βx, x < 1

2 ,

β(1 − x), x > 1
2 ,

(9)

which can also be equivalently represented as

ztent
1 (x) = β

π
arcsin[sin(πx)], (10)

where x ∈ (0, 1).2 The Floquet evolution of the CFT is then
given by iterated composition (6) of maps (8) or (9) and the
dilatation. For both choices, it can be shown that by properly
rescaling the holomorphic map, the stroboscopic dynamics
can in fact be reformulated as a Hamiltonian dynamics fol-
lowing a single quench [39].

The iterative dynamics of these maps gradually becomes
more and more complicated when the α and β parameters
approach the critical values αchaotic = 4 and βchaotic = 2 cor-
responding to the truly chaotic regime. One can naturally
expect that properties of a CFT driven by such a dynamical
system would encode the deterministic chaos in a nontrivial
way. To study that, for the Floquet driving Eq. (7), we choose
z1 to be either the tent or logistic map, and z̃1 the dilatation
transformation.

As shown in the Supplemental Material [39], in order to
describe the evolution of a CFT with some deformation f , a
one-step transformation z1 should allow the Schröder equation
(5) to have nontrivial solutions. f (z) can then be restored from
(3). In general, it is hard to find the solution for χ analytically,
and the answer is known only for a limited number of func-
tions z1 [40,41]. In the chaotic regime, for the logistic and tent
maps, χ (z) is [42]

logistic, α = 4 : χ (z) = arcsin2(
√

z),

tent, β = 2 : χ (z) = arcsin2
[
sin

(πz

2

)]
, (11)

with the resulting expressions for the Hamiltonian deforma-
tions:

fα=4(z) =
√

1

z
− 1 arcsin(

√
z),

fβ=2(z) = 1

πz
arcsin

[
sin

(πz

2

)]√
cos2

(
πz
2

)
cos

(
πz
2

) . (12)

For both maps, the corresponding eigenvalue is λ = 4.
For the logistic map, it turns out to be possible to obtain an

explicit form of the Hamiltonian deformation also for α = 2,

f (z) =
(

1 − 1

2z

)
log(1 − 2z), (13)

2Equation (10) allows us to continue the tent map to the complex
plane: f (z) = arcsin(z) is expressed through complex logarithms.
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FIG. 1. Irregular part of the entanglement entropy Schaotic as a function of bipartition coordinate. Note that for the purpose of a nicer
representation we define �S = −(Sreg + Schaotic ), so that in fact the contributions to the entanglement entropy are negative. Top row: After
n = 18 Floquet steps of the tent map. Bottom row: After n = 10 steps of the logistic map.

as well as an approximate expression at small values of α,

f (z) = (1 − z)[1 − αz(1 − z)]

(1 − 2z)[1 − 2αz(1 − z)]
. (14)

In the Supplemental Material [39], we provide an idea of the
derivation and plot profiles of the deformations in the real
space domain in the original coordinates, x = Re(w). One can
see that despite the complicated analytic form of expressions
(13), the profiles have a rather simple shape that gives hope
that this (or a similar) setting allows for experimental imple-
mentation.

For the tent map, to reconstruct deformations of the Hamil-
tonian, one can utilize the expressions corresponding to the
logistic map and employ the Milnor-Thurston kneading theory
that connects logistic and tent maps by a semiconjugate rela-
tion [43] (we outline the basic elements of this construction
in the Supplemental Material [39]). Fortunately, within the
approach we have taken here, it is possible to proceed without
having explicit expressions for f (z).

As we show in the Supplemental Material [39], CFTs
with deformations of this type are non-Hermitian. Theo-
ries of this kind have attracted interest because of their
relevance in the context of nonunitary dynamics of open
quantum systems [44], and the entanglement entropy in
such models has been studied [45,46]. Experimentally,
periodic Floquet driving that induces non-Hermitian evo-
lution can be implemented by switching on and off the
coupling between the quantum system and an external
bath [47,48].

To derive the real-time dynamics of the CFT, it is natu-
ral to get back to the original w coordinates on the strip.
The theory is defined on the spatial interval x ∈ (0, 1),
so we divide it into two subregions (0, 	) and (	, 1), and

compute the evolution of the von Neumann entanglement
entropy of this bipartition, which can be expressed as the
limit

S(	, t ) = lim
ν→1

Sν (	, t ), Sν (	, t ) = 1

1 − ν
log tr[ρν (	, t )],

(15)

where Sν (	, t ) is the Renyi entropy. The trace tr[ρν (	, t )]
can be computed as a one-point correlation function of
the primary twist operator Tν of conformal dimension
h [49–51]:

tr[ρν (	, t )] = 〈ψ (t )|Tν (	)|ψ (t )〉, h = c

24

(
ν − 1

ν

)
. (16)

Here, |ψ (t )〉 is the state of the system after n cycles of driving
(t = nτ ). The explicit expression for this correlation function
is [51]

〈ψ (t )|Tν (	)|ψ (t )〉 = Aν

(
∂zn

∂w

)h(
∂ z̄n

∂w̄

)h( 1

4
√

znz̄n

)h

×
(

2iε√
zn − √

z̄n

)2h

, (17)

where ε is a UV cutoff, and Aν is a constant that drops out of
the subsequent calculations. After taking the ν → 1 limit and
subtracting the ground state entanglement and the constant
terms, we obtain

�S(	, t ) = − c

12
log

(
− ∂wzn∂w̄ z̄n√

znz̄n(
√

zn − √
z̄n)2

)
. (18)

To extract the fractal contribution to the entropy scaling, it is
convenient to use “radial” parametrization zn = Rn exp(iφn)
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FIG. 2. Full correction to the entanglement entropy −�S =
Sreg + Schaotic (taken with an overall negative sign) as a function of
the bipartition coordinate for the tent (top, after n = 18 driving steps)
and the logistic maps (bottom, after n = 10 driving steps).

and z̄n = Rn exp(−iφn) [9]. In these variables, we get

�S = − (Sreg + Schaotic ), Sreg = log
∂wzn∂w̄ z̄n

4R2
n

,

Schaotic = log csc2

(
φn

2

)
, (19)

where we imposed c = 12 for the sake of nice normaliza-
tion. The names “regular” and “chaotic” come from the fact
that for both studied types of Floquet driving, Rn and the
determinant ∂wzn∂w̄ z̄n are regular objects, while csc2 (φn/2)
that depends on phase φn exhibits erratic fractal/chaotic
behavior.

For tent map driving, the fractal pattern in S(	, t ) is ex-
plicit, but its contribution to the overall entropy is rather
small, especially upon approaching the chaotic regime (top
panels of Figs. 1 and 2). Away from βchaotic, it has a
shape of a fractal with a rather low Hausdorff dimension.
For the logistic map driving, the irregular contribution ac-
quires a much higher amplitude and becomes comparable
with the regular part, which allows one to speak about the

FIG. 3. Dependence of the Hausdorff dimension of Schaotic on the
value of the driving parameter α/αchaotic (β/βchaotic) for the tent and
logistic drivings. For every value of α (β), the dimension and the
error bars are the correspondingly mean and standard deviations of
the so-called local fractal dimensions computed for different win-
dows of spatial scales ranging from �l ∈ (0.0004, 0.002) to �l ∈
(0.038, 0.04) [39,53].

fractal scaling of the entanglement entropy3 (bottom panels of
Figs. 1 and 2). .

While the self-similarity of the entropy curves is visually
recognizable, to really prove that Schaotic has a fractal shape, it
is instructive to compute its Hausdorff dimension. Since here
we are dealing with one-dimensional curves which cannot be
viewed as sets embedded in a two-dimensional space with
both coordinates having the meaning of length, naively ap-
plying a box-counting algorithm would lead to meaningless
results. Instead, we use the method suggested in Ref. [53]
(see also Ref. [54]) designed specifically for computing fractal
dimensions of one-dimensional profiles. We describe it in
detail in the Supplemental Material [39], and here provide
the results. In Fig. 3, we plot the dependence of the fractal
dimension of Schaotic. One can see that, in the logistic driving
case, significant fractality develops already for small values
of α, while for the tent map it is not until β = 0.5βchaotic = 1
when the entropy profile acquires fractal features. Error bars
reflect how well the estimated value persists across a range
of spatial scales. In other words, small error bars mean that
the corresponding profile is truly self-similar, while large er-
ror bars, such as for β/βchaotic > 0.75, signal that the fractal
dimension in fact flows. In both cases, upon α → αchaotic

and β → βchaotic, the irregular part of entanglement entropy
gradually approaches a fully chaotic regime passing through
fractal configurations at smaller values of the parameters.
It must be stressed that, for a given choice of α or β, the
entropy profile tends to stabilize as n → ∞ since the corre-
sponding iterative conformal map (7) stabilizes in this limit.

3States of a closed CFT obey a strong subadditivity condition,
which manifests itself on the level of entanglement entropy scaling
as a concavity of S(l ): S′′(l ) � 0 ∀l [52]. Given that our setting is
non-Hermitian and can possibly be interpreted as an open quantum
system, this constraint can be naturally violated.

L100302-4



DETERMINISTIC CHAOS AND FRACTAL ENTROPY … PHYSICAL REVIEW B 103, L100302 (2021)

This observation is important in two regards. First, for large
enough times one can view the evolving stroboscopic state as
effectively stationary, making this kind of Floquet driving a
candidate mechanism for creating stable in time fractal phases
of matter that are not achievable in static systems. Second, the
sharp and distinguishable fractal structures at α � αchaotic and
β � βchaotic, that could be of higher potential interest than the
pseudorandom profiles emerging in the chaotic phase, do not
gain “featureless” corrections over the course of the repeated
driving.

In this Letter, we have shown that deterministic chaos
that emerges in dynamical systems as a result of iterative
applications of holomorphic maps can be implemented in
the context of Floquet CFT driving. Making use of the fact
that the Floquet evolution of a 2D CFT can be expressed
as an iterated composition of conformal maps followed by
an analytical continuation to real time, we have studied the
consequences of choosing the maps that generate dynamical
systems exhibiting the order-chaos transition. In the language
of Hamiltonian dynamics, it means that the system Hamilto-
nian is swung between the deformed and undeformed versions
at equal periods of time, so that the CFT is perturbed in a stro-
boscopic manner. When the corresponding dynamical system
is tuned towards the transition point, self-similar corrections
to the entanglement entropy arise on top of the main smooth
component, and the entropy as a function of the bipartition
coordinate acquires a fractal shape. Usually, the entropy scales
monotonously with the size of the smaller subsystem, and
the scaling law serves as a signature of the class to which
the quantum state belongs. In this regard, the situation when
entanglement entropy strongly oscillates as a function of the
number of degrees of freedom included in the subsystem is
highly anomalous. It is also interesting to note that, in our
setting, the fractal structures emerge as a result of periodic in
time regular driving.4

4Recent studies discussed similar phenomena in systems driven
randomly or quasiperiodically [55,56].

Here, we analyzed the entropy scaling (see the Supple-
mental Material [39] for the analysis of one-point correlation
functions), and such an unusual structure of quantum cor-
relations would definitely affect the transport and spectral
properties of the system. Thus it could be important to
study states of this kind in more detail because the pos-
sibility to create them by means of stroboscopic driving
might have unexpected implications for many-body quantum
physics.

Since chaotic dynamical systems are ubiquitous, we can
expect that quantum states with a nonregular behavior of
observables and quantum correlation measures can in fact
be engineered in a broad class of Floquet systems. For
example, in certain cases (1 + 1)D conformal field theo-
ries can be regarded as continuous limits of spin chains,
which, in turn, can be implemented experimentally us-
ing cold atoms in optical lattices [57] or by scanning
tunneling microscopy (STM) manipulation [58]. Another po-
tentially promising research avenue is to understand whether
fractal-generating driving can be realized as some black-hole
perturbations in the holographic context (see, for example,
Ref. [59]), and study its meaning in classical and quantum
gravity.
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