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We study how symmetry can enrich strong-randomness quantum critical points and phases, and lead to robust
topological edge modes coexisting with critical bulk fluctuations. These are the disordered analogs of gapless
topological phases. Using real-space and density matrix renormalization group approaches, we analyze the
boundary and bulk critical behavior of such symmetry-enriched random quantum spin chains. We uncover a new
class of symmetry-enriched infinite randomness fixed points: while local bulk properties are indistinguishable
from conventional random singlet phases, nonlocal observables, and boundary critical behavior are controlled
by a different renormalization group fixed point. We also illustrate how such new quantum critical points emerge
naturally in Floquet systems.
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I. INTRODUCTION

Topological phases form a cornerstone of modern con-
densed matter physics, extending beyond the Landau-
Ginzburg paradigm of symmetry-breaking order. An espe-
cially important class of topological states are symmetry-
protected topological (SPT) phases [1–11], which are gapped
systems characterized by nonlocal order parameters and
symmetry-protected topological edge modes. Prominent ex-
amples of SPT phases include fermionic topological in-
sulators [12–19], protected by time-reversal and charge
conservation symmetry, or the Haldane phase in quantum spin
chains [20–23], protected by spin-rotation symmetry.

Recently, the concept of SPT order was extended to gapless
systems [24–56]: surprisingly, many of the key features of
SPT physics carry over to the gapless case, despite the nontriv-
ial coupling between topological edge modes and bulk critical
fluctuations. It is also helpful to think of gapless SPT (gSPT)
states [45] as symmetry-enriched quantum critical points (SE-
QCP) [54], where global symmetries can enrich the critical
behavior of critical systems. This led to the discovery of new
critical points and phases with unusual nonlocal scaling op-
erators, which imply an anomalous surface critical behavior,
and symmetry-protected topological edge modes. In certain
cases, such SEQCPs are naturally realized as phase transitions
separating SPT and symmetry-broken phases: while the bulk
universality class is locally dictated by the Landau-Ginzburg
theory of spontaneous symmetry-breaking, the nonlocal op-
erators, and the surface critical behavior are affected by the
neighboring SPT phase.

In this work, we show that the mechanism protecting gap-
less SPT phases persists upon adding disorder. We focus on
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one-dimensional systems, where the bulk criticality flows to
infinite-randomness fixed points [57–62]. We first discuss the
paradigmatic infinite-randomness Ising criticality, where we
find that—similar to the clean case [54]—there are topolog-
ically distinct versions in the presence of an additional ZT

2
symmetry. We find that one of these classes has topologi-
cally protected edge states. While this is a fine-tuned critical
point, our second example is a stable random singlet phase
of matter. Moreover, in the latter case, there are additional
gapped degrees of freedom, which are able to make the edge
mode exponentially localized. We also illustrate how this
topological random quantum criticality can emerge naturally
in periodically driven (Floquet) systems.

II. ISING� TRANSITION

We consider the spin-1/2 chain

H = −
∑

i

JiZiZi+1 −
∑

i

hiXi −
∑

i

giZi−1XiZi+1, (1)

where X,Y, Z denote the Pauli matrices. The model has a
Z2 spin-flip symmetry (generated by P = ∏

i Xi) and a time-
reversal symmetry ZT

2 (acting as the complex conjugation
T = K). Let us first consider the clean case, where the co-
efficients Ji ≡ J , hi ≡ h and gi ≡ g are site independent. In
this case, the J, h, g � 0 terms, respectively, drive the sys-
tem towards ferromagnetic (FM), trivial paramagnetic (PM),
and Z2 × ZT

2 symmetry protected topological (SPT) [63–67]
phases, the latter sometimes being called the cluster or Hal-
dane SPT phase. The phase diagram is shown in Fig. 1(a),
with the gray solid lines indicating Ising criticalities.

Although the FM-PM and FM-SPT transition are both
described by the Ising conformal field theory (CFT), the
time-reversal symmetry acts differently on the disorder op-
erator, leading to different symmetry enriched CFTs (or
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FIG. 1. Random Ising� transition. (a) Phase diagram of the ran-
dom Ising Hamiltonian (1) for clean (solid lines) and disordered
(dotted lines, averaged over 2000 realizations), showing the topolog-
ical winding number ω for the dual fermionic description (see main
text). (b) Floquet phase diagram of Eq. (4), which shows two topolog-
ically nontrivial Ising� transitions. (c) Boundary magnetization under
small Zeeman field, showing spontaneous magnetization at the Ising�

transition [red star in (a)]. (d) Finite-size energy splitting of boundary
spins at the Ising� transition. (e) Spin-spin correlations involving bulk
and boundary spins (averaged over 1.5 × 105 realizations), compared
to theory predictions (solid black lines), where ϕ is the golden ratio.
Calculations are performed using the SBRG method on a 512-site
spin chain.

gapless SPTs) [45,48,51,54,56]. To briefly review this, note
that an Ising CFT has a unique local and a unique non-
local scaling operator with scaling dimension � = 1/8,
commonly denoted by σ and μ, respectively. These are
the order parameters of the nearby phases, i.e., σ (n) ∼
Zn is the Ising order parameter, whereas the disorder
operator μ(n) is the Kramers-Wannier-dual string order pa-
rameter of the symmetry-preserving phase. In the trivial
PM, μ(n) ∼ ∏n

j=−∞ Xj , whereas in the SPT phase, μ(n) ∼∏n
j=−∞ Zj−1XjZ j+1 = · · · Xn−2Xn−1YnZn+1 [53,54,68,69]. We

see that the two Ising critical lines are distinguished by the
discrete invariant T μT = ±μ [54]. This means they must be
separated by a phase transition. Indeed, in Fig. 1(a) they meet
at a multicritical point where the central charge is c = 1.

We refer to the nontrivial case, where the nonlocal bulk
operator is charged T μT = −μ, as Ising�. This supports a
localized zero-energy edge state [54]. Intuitively, the edge
of the Ising� criticality spontaneously breaks the Ising Z2

symmetry. This unusual degenerate boundary fixed point is

stable since μ is charged and hence cannot be used to disor-
der the boundary. The finite-size splitting of this edge mode
is parametrically faster than the finite-size bulk gap ∼1/L.
In particular, if the model is dual to free-fermions [such as
Eq. (1)] then the edge mode is exponentially localized [48]
whereas with interactions, the splitting becomes ∼1/L14 [54].

III. RANDOM ISING� TRANSITION

We now study the fate of Ising� upon disordering the
system. The coefficients Ji, hi, and gi in Eq. (1) are now
independently drawn from power-law distributions P(J ) =
(J/J0)1/�/(�J ) for J ∈ [0, J0] [similarly for P(h) and P(g)],
where � controls the width of the distribution in logarithmic
scale. The limit � → 0 would recover the clean case. We will
take � = 1, i.e., the uniform distribution.

In the presence of randomness, the Ising CFT flows to-
wards the infinite-randomness fixed point (� → ∞) [59,61].
We will explore the symmetry enriched infinite-randomness
fixed point as the many-body localized counterpart of gap-
less SPT states. The disordered phase diagram is shown in
Fig. 1(a), which is qualitatively unchanged from the clean
case. This was obtained by mapping Eq. (1) to free fermions
(using a Jordan-Wigner transformation) and using the transfer
matrix method to determine the topological winding number
ω [70]; in this case the PM, FM, and SPT phases map to the
trivial (ω = 0), Kitaev chain (ω = 1) and two Kitaev chains
(ω = 2). In the original spin chain language, one can interpret
ω as encoding the ground-state degeneracy 2ω with open
boundary conditions, which is 0, 2, and 4, respectively.

Similar to the Ising CFT, the infinite-randomness Ising
fixed point also has a local σ and nonlocal μ scaling oper-
ator. While their scaling dimensions have changed (�bulk =
1 − ϕ/2 ≈ 0.191 where ϕ = 1

2 (1 + √
5) is the golden ratio

[61]), their lattice expressions are as before—indeed, the
nearby gapped phases are still characterized by the same order
parameters. We thus still have the bulk topological invariant
T μT = ±μ, distinguishing two distinct symmetry-enriched
infinite-randomness Ising fixed points, which we refer to as
the Ising and Ising�. For the same reasons as before, we expect
that the disordered Ising� criticality has spontaneously fixed
boundary conditions. This would come with at least three
physical fingerprints: (i) a nonzero spontaneous magnetization
at the boundary, (ii) a degenerate edge mode whose finite-
size splitting is parametrically smaller than the bulk gap, and
(iii) spin-spin correlations near the boundary should have a
boundary scaling dimension [71,72] �

bdy
σ = 1/2 (or 0) for

free (or spontaneously fixed) boundary condition, character-
izing the Ising (Ising�) case.

We now test these predictions numerically. Because we
will be interested in including interactions, we use the
spectrum bifurcation renormalization group (SBRG) method
[73–76], which is a numerical real-space renormalization
group approach that progressively transforms the original
Hamiltonian H to its diagonal form HMBL = ∑

a εaτa +∑
ab εabτaτb + · · · as a many-body localization (MBL) effec-

tive Hamiltonian [77–79], and constructs the (approximate)
local integrals of motion τa of the MBL system in the
form of Pauli strings. The approximation is asymptotically
exact in the strong-disorder limit. The rescaled parameters
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(J̃, h̃, g̃) ≡ (J0, h0, g0)1/� are invariant under the renormaliza-
tion group (RG) flow, and should be considered as tuning
parameters. SBRG can be thought of as an implementation of
the strong disorder real-space renormalization group (RSRG)
[57–62] and its generalization to excited states (RSRG-X)
[80–83] in operator space. While SBRG can be used to study
MBL physics and excited states, in the following we focus on
T = 0 ground-state properties.

IV. SBRG RESULTS

We focus on the Ising� transition at (J̃, h̃, g̃) = (1, 0, 1)
[red star in Fig. 1(a)]. We have verified [76] that in the bulk,
the Ising� transition flows to an infinite-randomness fixed
point with dynamical scaling l ∼ (log t )2 ∼ (− log ε)2 that
relates the length scale l and the energy scale ε [61], and
logarithmic scaling of the entanglement entropy [84,85]. This
is not surprising because with periodic boundary conditions,
Ising, and Ising� are unitarily equivalent.

We now probe the boundary properties. To include the
effect of interactions, we follow Ref. [54] and add a
generic Z2 × ZT

2 -symmetric boundary perturbation HV =
−V (X0Z1Z2 + ZL−2ZL−1XL ), with V a random variable ten
times smaller than the bulk couplings. Microscopically, this
perturbation can flip the boundary Ising spin. Nevertheless, if
we study the boundary magnetization m = 〈Z0〉 in response to
a small Zeeman field hz applied along the z axis, we find that
it tends to a nonzero limit as hz → 0 (with hz smaller than the
finite-size bulk gap, but larger than the ground states splitting,
see below), shown in Fig. 1(d). This is in contrast to the trivial
Ising fixed point, where the boundary magnetization is known
to vanish as m(hz ) ∼ 1/| log hz| [71].

Thus the boundary is spontaneously magnetized in the
Ising� case despite the Hamiltonian (1) being symmetric.
Schematically, on a finite system we have two spontaneously
fixed ferromagnetic (FM) ground states |↑L ↑R〉 and |↓L ↓R〉,
where L and R denote the configurations of the left and
right edge modes (note that these are split from |↑L ↓R〉
and |↓L ↑R〉 by the critical bulk penalizing antiferromagnetic
states) [45,54]. The above perturbation HV can couple these
FM states at second order in V , which should lead to a
finite-size splitting. The claim that we have a ground-state
degeneracy is only meaningful if this splitting is smaller than
the bulk finite-size gap. To confirm this, we arrange the en-
ergy coefficients εa obtained from SBRG in the ascending
order ε0 < ε1 < · · · , and focus on the lowest two. For the
Ising� transition with open boundary condition (OBC), ε0

characterizes the smallest energy splitting between |↑L ↑R〉 ±
|↓L ↓R〉 whereas ε1 characterizes the bulk excitation gap. As
shown in Fig. 1(e), both splittings ε0 and ε1 follow εa ∼
exp(−αaL1/3) but with different exponents α0 = 5.4 ± 0.6
and α1 = 2.51 ± 0.02, i.e., ε0 ≈ ε1

2. The finite-size splitting
ε0 of the symmetry-protected edge modes decays significantly
faster with the system size L compared to ε1. This provides a
quantitative distinction between the topological edge modes
and the bulk excitations. To further verify this interpretation,
we switch to the periodic boundary condition (PBC), the
fast-decaying topological splitting disappears and the smallest
splitting decays with the bulk exponent as α0 = 2.45 ± 0.02.

The Ising and Ising� states can be further distinguished by
their average boundary-bulk spin-spin correlation functions
〈Z0Zl〉, which decay as ∼1/l�

bdy
σ +�bulk

, where �
bdy
σ (�bulk)

is the boundary (bulk) scaling dimension of the Ising order
parameter mentioned before. We thus predict

〈Z0Zl〉 ∼
{

l−(3−ϕ)/2 ≈ l−0.69 Ising,

l−(2−ϕ)/2 ≈ l−0.19 Ising�.
(2)

In Fig. 1(f), we find that the boundary-bulk correlation fol-
lows 〈Z0Zl〉 ∼ l−(0.67±0.08) for Ising and l−(0.20±0.02) for Ising�,
which matches Eq. (2) within error bars. We also checked that
the bulk-bulk correlation 〈ZiZi+l〉 ∼ l−(0.42±0.05) decays with
the expected exponent 2�bulk = 2 − ϕ ≈ 0.38 for both Ising
and Ising� transitions.

V. SYMMETRY-ENRICHED RANDOM SINGLET PHASE

The Ising� transition provides a clear example of
symmetry-enriched random quantum critical point, with
stretched-exponentially localized edge modes. It is natural to
ask whether this notion can be extended to random critical
phases, and whether the topological edge modes can be made
exponentially localized despite the absence of a bulk gap.
Here, we answer both questions in the positive, by introducing
a symmetry-enriched random singlet phase.

In order to obtain a critical phase in one dimension, we
consider a system with charge conservation and particle-
hole symmetry. For concreteness, we will focus on the
random antiferromagnetic spin-1/2 XXZ spin chain HA =∑

i Ji(X A
i X A

i+1 + Y A
i Y A

i+1 + �iZA
i ZA

i+1), with Ji > 0 and 0 <

�i < 1 random couplings specified later. It has a symmetry
group GA = U (1) � ZA

2 with the ZA
2 spin flip generated by∏

i X A
i , while the U (1) part corresponds to

∑
i ZA

i conserva-
tion. For uniform couplings, this spin chain is in a Luttinger
liquid phase; while for random couplings, its low-energy
properties can be captured by a real-space renormalization
group (RSRG) procedure very similar to the SBRG approach
above (but restricted to the ground state). The random XXZ
spin chain forms a random singlet phase [60], where the
ground state is asymptotically made of non-crossing pairs of
singlets of all ranges, with quantum critical properties similar
to the random Ising transition (which itself can be thought of
as a random singlet state of Majorana fermions). In particular,
the entanglement entropy grows logarithmically with effec-
tive central charge ceff = log 2 [85,86], and the gap closes
stretched exponentially with system size (dynamical exponent
z = ∞).

To obtain a topological random singlet phase, we use
the decorated domain walls construction [87] to twist the
random XXZ chain. To that effect, we introduce another
spin species B, with Ising symmetry GB = ZB

2 , with Hamil-
tonian HB = −∑

i X B
i + gBZB

i ZB
i+1. We take gB  1 so that

the B spins are disordered, deep into a quantum paramag-
netic phase. We then couple the two models by attaching
charges of the GB = ZB

2 symmetry to the domain walls of
the A spins. This is achieved by the unitary transformation
U = ∏

DW(A)(−1)(1−ZB
i )/2, where the product runs over all the

domain walls of the A spins in the Z basis, with U 2 = 1. After
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unitary rotation (twist) of HA + HB + V , we find

H =
∑

i

Ji
[
ZB

i−1

(
X A

i X A
i+1 + Y A

i Y A
i+1

)
ZB

i+1 + �iZ
A
i ZA

i+1

]

−
∑

i

ZA
i X B

i ZA
i+1 + gBZB

i ZB
i+1 + V ′, (3)

where V ′ = UVU represents arbitrary small perturbations
that preserves the GA × GB symmetry. Following the termi-
nology of Refs. [45,51], we refer to Eq. (3) and HA + HB +
V = UHU as the gSPT and gTrivial (gapless, topologically
trivial) Hamiltonians, respectively.

For periodic boundary conditions, H is unitarily related
to HA + HB plus perturbations, and thus corresponds to ran-
dom singlet A spins coupled to the gapped paramagnetic B
spins. Nevertheless, the two models are topologically dis-
tinct. Like Ising and Ising� above, they can be distinguished
by the charges of nonlocal scaling operators. In fact, since
now there are additional gapped degrees of freedom, one can
consider a string order parameter with long-range order: in
the trivial case HA + HB this is · · · X B

j−2X B
j−1X B

j whereas in
the topological case H it is · · · X B

j−2X B
j−1X B

j ZA
j+1. In the latter

case, this string order parameter for the gapped B variables
is charged under GA. This discrete invariant shows that we
have two distinct symmetry-enriched versions of the same un-
derlying infinite-randomness fixed point. Relatedly, for open
boundary conditions, we have H = J0�0ZA

0 ZA
1 + ZA

0 X B
0 ZB

1 +
ZB

0 ZB
1 + . . . , and in the absence of additional perturbations

(V = 0), we see that [ZA
0 , H] = 0, providing an exact edge

mode.
Going away from this special limit, we expect exponen-

tially localized topological edge modes to be protected by the
finite gap of the B spins, as in the clean case [45,51]. We
confirmed numerically the presence of exponentially localized
edge modes coexisting with bulk random singlet criticality
using density-matrix renormalization group (DMRG) [88,89]
techniques (Fig. 2), including generic symmetry-preserving
perturbations [76].

VI. FLOQUET ISING� CRITICALITY

To close this paper, we illustrate how such novel univer-
sality classes emerge naturally in the context of periodically
driven (Floquet) systems. We focus on the driven quantum
Ising chain characterized by the single-period evolution (Flo-
quet) operator [90]

F = e− i
2

∑
i JiZiZi+1+...e− i

2

∑
i hiXi+... (4)

where the dots represent small but arbitrary interactions pre-
serving the Z2 symmetry G = ∏

i Xi. For strong enough
disorder, this system admits four dynamical phases protected
by MBL [90]. In addition to the familiar paramagnetic (PM)
and spin glass (SG) Ising phases, there are two more phases
called π -SG (also known as time crystal [90–94]) and 0π

PM (a nontrivial SPT phase); see Fig. 1(b). This phase struc-
ture is due to an emergent Z2 symmetry inherited from time
translation symmetry. The transitions between those phases
have been argued to be in the random Ising universality class
[95,96] (ignoring potential instabilities towards thermaliza-
tion in the presence of interactions [97–99]). Here we note

FIG. 2. Symmetry-enriched random singlet phase. DMRG re-
sults on Eq. (3) including various perturbations [76]. Fits of the
typical and average finite size gaps, showing a scaling compatible
with the random-singlet z = ∞ scalings �Etypical ≡ elog �E ∼ e−√

L

and �E ∼ e−L1/3
. Top-right inset: the splitting between the two

ground states vanishes exponentially with system size, indicating
exponentially localized edge modes. Bottom-left inset: spontaneous
boundary magnetization in the presence of a small symmetry-
breaking magnetic field h.

that the transitions out of the 0π PM are actually in the
random Ising� universality class described above, protected by
Z2 × Z2 symmetry (one of the Z2’s being emergent). This is
because the 0π PM is closely related to the Z2 × Z2 equilib-
rium SPT [90,100–103]. We find exponentially localized edge
modes at the transitions separating the 0π PM to either the SG
or π -SG, which are protected due to the disorder operator μ

for the critical Z2 symmetry again being charged with respect
to the second Z2 symmetry, as detailed in the Supplemental
Material [76]. (The edge mode localization is exponential as
in the random singlet phase above, as the protecting symmetry
is Z2 × Z2 instead of Z2 × ZT

2 .)

VII. DISCUSSION

We have demonstrated the existence of symmetry-enriched
infinite-randomness fixed points with robust topological edge
modes coexisting with all the characteristics of strong disorder
quantum criticality. In particular, we have shown that the
paradigmatic random Ising critical point and XXZ random
singlet phase come in topologically distinct versions in the
presence of an additional ZT

2 or Z2 symmetry. The topological
edge modes couple nontrivially to gapless bulk fluctuations,
leading to anomalous boundary critical behavior. We ex-
pect our findings to extend to essentially all known strong-
and infinite-randomness critical points: finding examples of
symmetry-enriched random critical points in 2+1d [62,104]
and 3+1d represents an interesting direction for future works.
It would also be interesting to investigate the consequences of
our results for dynamical properties [96,105–107].
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