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Transmission zeros with topological symmetry in complex systems
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Understanding vanishing transmission in Fano resonances in quantum systems and metamaterials and perfect
and ultralow transmission in disordered media has advanced the knowledge and applications of wave inter-
actions. Here, we use analytic theory and numerical simulations to understand and control the transmission
and transmission time in complex systems by deforming a medium and adjusting the level of gain or loss.
Unlike the zeros of the scattering matrix, the position and motion of the zeros of the determinant of the
transmission matrix (TM) in the complex plane of frequency and field decay rate have robust topological
properties. In systems without loss or gain, the transmission zeros appear either singly on the real axis or as
conjugate pairs in the complex plane. As the structure is modified, two single zeros and a complex conjugate
pair of zeros may interconvert when they meet at a square root singularity in the rate of change of the distance
between the transmission zeros in the complex plane with sample deformation. The transmission time is the
spectral derivative of the argument of the determinant of the TM. It is a sum over Lorentzian functions
associated with the resonances of the medium, which is the density of states, and with the zeros of the TM.
Transmission vanishes, and the transmission time diverges as zeros are brought near the real axis. Monitoring
the transmission and transmission time when two zeros are close may open new possibilities for ultrasensitive
detection.
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I. INTRODUCTION

There has been longstanding interest in understanding the
suppression of scattering in quantum and classical systems.
The increasing power of nanofabrication and the continuing
discovery of novel properties of waves in metamaterial has
heightened interest in exploiting singularities in the scattering
matrix (SM) [1–3] or in portions of the SM, such as the reflec-
tion matrix (RM) [4], for applications to sensing, switching,
lasing, and energy deposition [1–4]. The singularities of the
SM in unitary systems are complex conjugate pairs of poles
and zeros in the complex energy or frequency plane. Incident
radiation is completely absorbed when a zero of the SM is
brought to the real axis. Such coherent perfect absorption
(CPA) [1,5–10] is the time reversal of an outgoing wave at the
lasing threshold. Lasing and CPA may occur simultaneously
in a parity-time (PT)-symmetric system in which a pole and its
conjugate zero are brought to the real axis together [11,12].

Zero reflection is also achieved in any subset of input
channels when zeros of the RM are on the real axis [4,13]. The
reflection zeros may be found anywhere in the complex plane.
The reflection time difference (RTD) between the two sides
of a quasi-one-dimensional (1D) sample can be expressed
as a sum of Lorentzians associated with the reflection zeros
[14,15]. This is a counterpoint to the Wigner time delay, which
can be expressed as the sum of resonances corresponding to
Lorentzian functions for the poles [16].

The transmission matrix (TM) was developed to explain
the scaling of conductance in the quasi-1D wire geometry [17]
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but has been intensively studied recently because it allows
the control of transmission of classical waves [18–23]. The
question naturally arises as to whether zeros exist in the TM
as they do in the SM and the RM. For the SM and the RM,
the determinant of the matrix involves a numerator which is
a single determinant, while the numerator of the determinant
of the TM involves a product of determinants, so that the
path to a transmission zero (T-zero) is not apparent. However,
we will see that it is from this added complexity that unique
topological constraints emerge that make it easy to visualize
and control the motion of T-zeros.

Fano resonances are a subset of the complex T-zero in
which the T-zeros fall on the real axis in the complex plane.
Fano’s analysis [24] was introduced to explain inelastic elec-
tron scattering in helium but has been applied beyond atomic
physics to nuclear and condensed matter physics, electronics,
and optics [25,26]. The steep asymmetric drop to zero in
spectra of Fano resonances arises from the interference of a
narrow mode and a continuum or broad mode [24,25,27–29].

In multichannel media, it is possible to achieve perfect
transmission in the highest transmission eigenchannel with
eigenvalue of the matrix tt† of unity τ1 = 1 by judiciously
manipulating the incident wave, where t is the N × N TM
[17,18,22]. Ultralow transmission in the lowest transmission
eigenchannel [17,18,30–32] is due to interference of far-off-
resonance modes [8]. The average of the lowest transmission
eigenchannel τN is e−2L/l , where L is the sample length and l is
the transport mean free path [17,30,31,33]. Whether transmis-
sion can be identically zero has remained an open question.
We will show that the transmission of the lowest transmis-
sion eigenchannel of a quasi-1D sample can vanish when the
T-zeros are on the real axis.
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In this paper, we demonstrate the topological structure of
zeros of the TM. While the TM has the same poles as the SM
and RM, the symmetry properties of the T-zeros are entirely
different. Like their conjugate partners, the poles, the zeros
of the SM are not associated with any symmetry within the
complex plane, while the zeros of the RM only exhibit a sym-
metry relative to the real axis in systems with PT symmetry
[4]. In contrast, T-zeros have mirror symmetry relative to the
real axis in lossless random systems. This unique property
requires that, in a unitary medium, the T-zeros appear either
as single zeros on the real axis or as complex conjugate pairs.
The single zeros are topologically constrained to move on
the real axis with deformation of the sample. They may only
leave or arrive at the real axis when two single zeros meet
and interconvert with a conjugate pair of zeros. The rate of
change of the frequency of single zeros and of the distance
from the real axis of the conjugate pair near this degenerate
zero point (ZP) diverges. Changes in the sample near the ZP
can in principle be detected with ultrahigh sensitivity. This
is analogous to the heightened sensitivity that arises when
two poles approach an exceptional point (EP) [34,35], but
the approach to the ZP can be readily achieved and moni-
tored. Because of the symmetry of T-zeros in unitary systems,
the transmission time is proportional to the density of states
(DOS), which is a sum of Lorentzian lines associated with the
poles or resonances. In the presence of loss or gain, however,
the zeros are manifest in the spectrum of transmission time
as Lorentzian lines with linewidths which vanish as the zeros
are brought to the real axis. The prospects for ultrasensitive
detection of perturbations near a ZP are discussed.

A. Symmetry of transmission zeros

The TM t is a quadrant of the SM S = [r t ′
t r′] =

[V
U][−

√
1 − τ

√
τ√

τ
√

1 − τ
][V †

U †]. Here, τ is the diagonal ma-
trix of transmission eigenvalues, and U and V are unitary
matrices [23]. In 1D, the transmission time is the spectral
derivative of the phase of the transmitted field τT = d arg(t )

dE ,
where h̄ = 1, and E is the angular frequency ω for classical
waves [36–40]. Generalizing this relation to quasi-1D gives
τT = d

dE argdet(t ). We show in Sec. I of the Supplemental
Material [41] that, in a lossless medium, this relation gives
τT = πρ, where ρ is the DOS [42,43].

To separate the impacts of resonances and zeros upon the
transmission time, we employ the Heidelberg model [16,44–
48], in which the SM is expressed as S = I−iK

I+iK , where K =
πW † 1

E−Hin
W . Here, Hin is the internal Hamiltonian of the

scattering region, and W is the coupling matrix between
the channels in the leads and the modes within the medium.
The coupling between the N channels in the leads and the M
quasinormal modes of the system within the spectral range
of interest is given via the matrix W = [W1 W2], where
the M × N matrix W1/2 couples the scattering region and the
surroundings. The expression for the determinant of the TM
is obtained in Sec. II of the Supplemental Material [41]

det(t ) = (−2π i)N
det(E − Hin ) det

(
W †

2
1

E−Hin
W1

)

det(E − Heff )
, (1)

where Heff = Hin − iπWW † is the effective Hamiltonian of
the scattering region.

Similarly, for transmission from the right to left
sides, det(t ′) = (−2π i)N det (E − Heff )−1 det(E − Hin ) det
(W1

† 1
E−Hin

W2).
The numerator in Eq. (1), Y = det(E − Hin )

det(W †
2

1
E−Hin

W1) points to the condition of zero transmission.
However, Y does not have a clear physical meaning and
contains the inverse of E − Hin. In contrast, the operator
for zeros of the SM is YS = det(E − Hin − iπWW †),
and the operator for the zeros of the RM is YR =
det(E − Hin + iπW2W

†
2 −iπW1W

†
1 ). Both operators have

a straightforward physical meaning. When CPA is achieved,
all channels provide effective gain, so that the effective
internal Hamiltonian is Hin + iπWW †. For the reflectionless
case, the input channel acts as effective gain, and the output
acts as effective loss; thus, the effective internal Hamiltonian
is Hin − iπW2W

†
2 + iπW1W

†
1 [4].

In contrast, the numerator of the TM has the unique prop-
erty that it is real for real E . In a reciprocal system, tT = t ′, so
that det(W †

2
1

E−Hin
W1) = det(W †

1
1

E−Hin
W2). When, in addition,

the system does not possess internal loss or gain, H†
in = Hin.

When E is on the real axis, (W †
2

1
E−Hin

W1)† = W †
1

1
E−Hin

W2.
Combining these equations, we find for a unitary reciprocal
system that det(W †

2
1

E−Hin
W1) is real for real E .

Furthermore, as shown in Sec. II of the Supplemental
Material [41], the numerator of Eq. (1) can be expressed as∏M−N

i=1 (E − ηi ). Here, the ηi = Zi + iζi denote the zeros of
det(t ), while the denominator is given by det(E − Heff ) =∏

n(E − λn), where λn = En − iγn are the poles of the res-
onances, and γn is the halfwidth of the mode. This yields the
factorized expression

det(t ) ∼
∏M−N

i=1 (E − ηi)∏M
j=1 (E − λ j )

. (2)

Since the transmission time is given by τT = d
dE argdet(t ),

the sum of the contributions from poles and zeros is

τT = τp+τz =
∑

n

γn

(E − En)2+γ 2
n

+
∑

i

ζi

(E − Zi )2 + ζ 2
i

.

(3)
Since

∏M−N
i=1 (E − ηi ) is always real for real E in a unitary

system, the ηi must be disposed symmetrically with respect to
the real axis. The zeros are therefore either real or part of a
conjugate pair. Therefore τz vanishes in a unitary system and
τT is due solely to the poles, which is the DOS [16,43].

The symmetry of the ηi is broken by loss or gain so that τz

no longer vanishes. For a system with uniform internal loss
or gain, Hin = H0 − iγ , the position of the zeros of det(t )
shifts down by iγ , giving η′

i = ηi − iγ . The contribution of
a single zero to τT is τz = −γ

(E−Z )2+γ 2 , with peak value −γ −1.
For a conjugate pair of zeros in a unitary medium, η = Z ± iζ ,
the corresponding zeros for the nonunitary system are at
η′ = Z + i(±ζ−γ ). A pair of zeros then contribute to the
transmission time with τz = −ζ−γ

(E−Z )2+(−ζ−γ )2 + ζ−γ

(E−Z )2+(ζ−γ )2 ,

giving a local extremum at E = Z of 2γ

ζ 2−γ 2 . When a T-
zero is near the real axis of the complex energy plane,
a narrow Lorentzian peak appears in the spectrum of the
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FIG. 1. Transmission zeros in a random quasi-one-dimensional (1D) sample. Simulations are carried out in a sample of width 20 and
length 60 which supports five channels in the energy range of the simulation. (a) Intensity profile for the perfectly transmitting eigenchannel at
E = 0.6845 and the eigenchannel with vanishing transmission at E = 0.6873 indicated, respectively, by the blue and red squares, in (b). The
color bar is linear for the first pattern and logarithmic for the second pattern. (b) Spectra of the five transmission eigenvalues in the lossless
system. (c) Transmission times for onsite loss γ = 0.002. τp is calculated by integrating the imaginary part of the local Green’s function
τp = − ∫

ImG(r, r, E )d−→r , which is the local density of states (DOS). τz = τT − τp is given by the black curve. The inset shows that τp and
τT coincide, with τz = 0 in the lossless system. (d) Lossy system with γ = 0.0053 in which one transmission zero lies on the real axis at
E = 0.666 with τN = 0. (e) Displacement of three transmission zeros in the complex plane for the losses in (b)–(d). (f) Phase map of arg det(t )
in the complex energy plane. Red (blue) squares indicate transmission zeros (poles).

transmission time. Thus, counterintuitively, narrow spec-
tral lines or even discontinuities are produced by adding
absorption.

The divergence of transmission time when a T-zero is near
the real axis can be understood by the complex representa-
tion of the trajectory of the transmitted field vs frequency
in a double mode system (Fig. S1b of the Supplemental
Material [41]). In Sec. III of the Supplemental Material
[41], we discuss the divergence of the transmission time

when the trajectory of the transmitted field is near the
origin.

We note that Eq. (3) remains valid even when a nonreso-
nant part of field contributes to the transmission, for instance,
in the interference between a coherent wave and a resonant
mode (Sec. IV of the Supplemental Material [41]). In general,
τz does not vanish in a nonunitary system; however, it can
vanish in a 1D PT-symmetric system [11,49] with balanced
loss and gain (Sec. V of the Supplemental Material [41]).
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B. Transmission zeros in a quasi-1D system

We first explore the impact of transmission zeros on the
transmission and transmission time in a random quasi-1D
sample. We carry out simulations for a quasi-1D system us-
ing the tight-binding model simulated with the open-source
package Kwant [50] for a sample with N = 5. The results for
a system in which the onsite energy is 4 in the uniform leads
and distributed randomly within the scattering region over
[4 − w, 4 + w], with w = 1.1, and nearest neighbor coupling
−1 are shown in Fig. 1. The profiles of energy density of
the transmission eigenchannels with perfect and vanishing
transmission in a lossless sample are shown in Fig. 1(a) for
points in the spectra of the transmission eigenvalues indicated
by the squares in Fig. 1(b).

The inset in Fig. 1(c) shows that τT and τp coincide in the
lossless system, with τz = 0. With uniform internal loss of
γ = 0.002, however, τT and τp differ, as shown in the spec-
trum of τz = τT − τp in Fig. 1(c). The imaginary coordinates
of the transmission zeros can be determined from the extrema
in τz. The peak of τz indicated by the red circle in Fig. 1(c)
shows that one of the zeros of a pair is slightly above the real
axis. The value at the peak of τz,

2γ

ζ 2−γ 2 gives ζ = 5.3 × 10−3.
Thus, the upper T-zero of the pair at E = 0.666 would be
moved to the real axis by adding loss of γ = 5.3 × 10−3.
At this energy, the lowest transmission eigenchannel vanishes
τN = 0, as indicated by the dip in τN in Fig. 1(d).

Simulation of transmission in the lossless system does
not allow a definitive determination of whether the lowest
transmission eigenchannel is identically zero. This can be
determined, however, from the depth of the dip of τz when
absorption is added. For a single real transmission zero in the
lossless system, τz would dip to γ −1 = 500, as is indeed found
in Fig. 1(c). If det(t ) at this frequency in the lossless sample
were merely exponentially small, there would be a pair of
conjugated zeros close to the real axis, which would give a
dip of 2γ −1 = 1000. The dip of 500 allows us to conclude
that the smallest transmission eigenvalue at the blue circle is
identically zero in the lossless case.

There are three transmission zeros within the energy range
of Fig. 1. Their positions are shown in Fig. 1(e) as the upper
zero of the pair is moved to the real axis. Both transmission
zeros and poles are topological phase singularities. The phase
of det(t ) can be seen in the phase map of Fig. 1(f) to increase
(decrease) by 2π in a counterclockwise rotation about the
transmission zeros (poles), which are indicated by red (blue)
squares. The phase singularities correspond to topological
charges of +1 for each zero. The topological charge of the
T-zero is conserved, as it is for phase singularities in the
speckle pattern of scattered waves [51–53].

C. Transmissionless mode and phase transition
of transmission zeros

We now consider the motion of transmission zeros with
displacement of an element of the sample. The sample is a
lossy billiard with reflecting disks coupled to its surroundings
via two single-channel leads. The lowest disk is displaced, as
shown in Fig. 2(a). The positions of the poles are found using
COMSOL mode solver and the harmonic inversion method
[54,55]. Figure 2(b) shows the zeros of a pair approaching
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FIG. 2. Interconversion of single and paired transmission zeros
in a lossy billiard. (a) Profiles of energy flow and field amplitude
at the T-zero indicated by the star in (b). The length of the arrows
indicates the logarithm of the flux. The amplitude of the field is
given by the color bar on the right. The permittivity in the system is
ε = 1 − 5 × 10−4i. The sample width and length are 10 and 20 cm.
The leads have a width of 1 cm. The diameter of the disk is 4 cm.
(b) Trajectories of two transmission zeros with x coordinates of the
center of the lowest disk at 1.996, 1.998, 2, 2.002, 2.0024, 2.0028,
2.003, 2.005, and 2.008 (cm). The two zeros meet at zero point (ZP)
when x = 2.003 cm. The star indicates the transmissionless mode in
the lossy system. (c) Phase diagram of transmission between 18.21
and 18.22 GHz when the lowest disk is at 2.000 cm (left), at 2.003
cm (middle, ZP), and 2.0033 cm (right). Red (blue) squares indicate
transmission zeros (poles).

each other on a curved trajectory as the lowest disk is dis-
placed to the right. The zeros remain equidistant from the line
ζ = −iγ along the trajectory and meet on the line at a ZP.
At the ZP, the phase changes by 4π in a counterclockwise
circuit of the zeros, so that the topological charge is conserved
as the paired zeros are transformed to single zeros, as can be
seen in Fig. 2(c). With further displacement of the disk, two
single zeros appear and move along the line ζ = −iγ . It is
noteworthy that the poles seen in Fig. 2(c) hardly move for
the small displacement in which a pair of zeros is converted to
two single zeros.

One of the T-zeros of a pair can be brought to the real
axis in an absorbing medium by deforming the sample, as
indicated by the star in Fig. 2(b). The profiles of intensity and
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FIG. 3. Sensitivity of near degenerate transmission zeros in lossless billiard. (a) Left panel shows the trajectory of two T-zeros relative to

the coordinate of the lowest disk. Right panel shows the variation of the frequency of the zeros with displacement of the disk. The green circles
and the curve drawn through them give the real frequencies of the pair of T-zeros which meet at x = 2.003 cm. The trajectories for the two real
zeros after they are created at x ∼ 2.003 cm are shown in the red and blue curves. The red (blue) curve in the inset of the right panel shows the
transmission spectrum when the x coordinate of the lowest disk is 2.003 (2.004) cm. (b) The trajectories of two transmission zeros with radius
r of the lowest disk with center at x = 2 cm. Two curves meet at r = 1.9872 cm. The inset shows transmission spectra for a radius of the disk
of 1.9872 cm (red) and 1.9850 cm (blue).

energy flow at the point that transmission vanished are shown
in Fig. 2(a). This differs from the situation in a Fano resonance
in which absorption disrupts zero transmission. The vanishing
of transmission in an absorbing sample is easily perturbed
since even a small perturbation moves the zero off the real
axis. In contrast, a single zero in a Fano resonance in a lossless
system cannot be moved off the real axis unless it meets a
second single zero and the two are converted to a pair of zeros.
This would be the time reversal of the scenario in Fig. 2(b).
As was the case for the quasi-1D sample, transmission in
the billiard can also be made to vanish by adding absorption
(Sec. VI of the Supplemental Material [41]).

The first frame in Fig. 3(a) shows the evolution of two zeros
in the complex plane as the lowest disk moves horizontally.
The diverging slopes of the trajectories of the single and
paired zeros relative to the x coordinate of the disk at the
ZP indicates the diverging sensitivity of the T-zeros at the ZP.
Near the ZP at Z0 = 18.2148 GHz, ζ0 = 0 for x0 = 2.003 cm,
|Z − Z0| = αZ

√
x − x0, with αZ = 0.17 for the single zeros

moving along the real axis, and |ζ − ζ0| = αζ

√
x − x0, with

αζ = 0.18 for the conjugate pair moving perpendicular to the
real axis. This gives the square root singularity in the sensi-
tivities of Z and ζ around the ZP: dZ/dx = αZ/2

√
x − x0 and

dζ/dx = αζ /2
√

x − x0. A comparison between transmission
spectra in which the zeros are at (red) or near (blue) the
ZP is shown in the inset in Fig. 3(a). A displacement of the
lowest disk of 0.001 cm produces a 0.01 GHz shift between
the transmission dips, which is a fractional shift of 5 × 10−4.
Figure 3(b) shows the sensitivity of the zeros relative to
change of the radius of the lowest disk, for which the sen-
sitivity of Z and ζ have a square root divergence at the
ZP with αZ = 0.11 and αζ = 0.09. Thus, an easily resolved
separation between the transmission dips is produced by a
fractional change of ∼0.1% of the diameter of the disk. This
translates to a layer of thickness 0.2 nm for a disk of 200 nm
in a structure on an optical scale. Since the dips are clearly
resolved, a thickness change which is a small fraction of an
atomic diameter could be detected.
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II. DISCUSSION

This paper explores the vanishing scattering coefficients.
We have shown that the transmission and transmission time
in complex structures are determined by the zeros as well as
the poles of the TM. In addition to sharp dips in transmission
when a T-zero is on the real axis, ultranarrow Lorentzian dips
and peaks in transmission time can be created by positioning a
T-zero slightly off the real axis. Unlike the zeros of the SM or
RM, there are strong topological constraints on the positions
and motion of zeros of the TM in the complex plane: In unitary
media, T-zeros either lie on the real axis of the complex energy
plane or are conjugate pairs. There is a square root singularity
in the sensitivity of T-zeros to deformation at a ZP at which
two single and a conjugate pair of T-zeros interconvert.

The present results show that transmission can vanish in
both single and multichannel systems. Thus, the dynamic
range of transmission eigenvalues is not limited in principle.
The T-zeros give a general approach to vanishing transmission
which is not limited by absorption, but in which absorption
can be used to produce vanishing transmission.

This paper opens many questions such as the statistics
of T-zeros, including the ratio of the number of single and
paired zeros and the distribution of the imaginary coordinate
of the paired zeros in structured and random systems. The

distribution of zeros of the SM has been calculated in chaotic
cavities [56]. The impact of nonuniformity in the imaginary
part of the dielectric constant is still to be considered.

Extreme sensitivity is also found near EPs [2,35,57]. How-
ever, the high sensitivity of T-zeros near a ZP does not require
the precise tuning of dissipation and/or gain for modes of the
medium to coalesce as is required for EPs [2,35,57–59]. The
ability to control the position of T-zeros by adding loss or
gain or by deforming the sample, combined with the diverging
sensitivity of T-zeros near a ZP, suggests that T-zeros may be
exploited for ultrasensitive monitoring of structural change.

All data needed to evaluate the conclusions in the paper are
presented in the paper and/or the Supplemental Material [41].
Additional data related to this paper will be supplied by the
authors upon reasonable request.
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