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An atomistic effective Hamiltonian is used to compute electrocaloric (EC) effects in rare-earth-substituted
BiFeO3 multiferroics. A phenomenological model is then developed to interpret these computations, with this
model indicating that the EC coefficient is the sum of two terms that involve electric quantities (polarization,
dielectric response), the antiferromagnetic order parameter, and the coupling between polarization and anti-
ferromagnetic order. The first one depends on the polarization and dielectric susceptibility, has the analytical
form previously demonstrated for ferroelectrics, and is thus enhanced at the ferroelectric Curie temperature. The
second one explicitly involves the dielectric response, the magnetic order parameter, and a specific magneto-
electric coupling, and generates a peak of the EC response at the Néel temperature. These atomistic results and
phenomenological model may be put in use to optimize EC coefficients.
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The electrocaloric (EC) effect is a phenomenon by which
a material exhibits a reversible temperature change under the
application/removal of an electric field [1–5]. It is attracting
attention due to its potential to be an efficient solid-state re-
frigeration technology (see, e.g., Refs. [6–19] and references
therein).

Furthermore, multicaloric effects that are driven simulta-
neously by more than one type of external physical handle,
such as electric and/or magnetic fields, mechanical stress, and
pressure [20–24], are also promising to enhance change in
temperature [23,24].

Recently, multiferroics, which are materials that possess
coupled long-range-ordered electric and magnetic degrees of
freedom [25–31], have also been mentioned as possible sys-
tems to enhance the EC effects by taking advantage of such
coupling [12,20,21,32–34]. The pioneering work of Ref. [33]
started from a phenomenological Landau-type equation for
which coefficients were determined from first principles to
investigate how magnetoelectric coupling modifies the EC
effect. The main result was that EC effects are significantly
enhanced (by about 60%) thanks to magnetoelectric coupling
in the case that the ferroelectric and magnetic critical temper-
atures coincide. However, one has to be careful when using
a Landau-type approach because fluctuations, which can be
important for responses, are not treated explicitly and may
be underestimated. That is why atomistic approaches incor-
porating couplings between electric dipoles and spins can be
useful to also study EC effects in multiferroics, as the authors

of Ref. [33] indicated. More importantly, it is presently un-
clear how to understand EC coefficients in multiferroics. For
instance, can these coefficients be considered as composed
of two terms, with one corresponding to that occurring in
normal ferroelectrics and the second one related to the cou-
pling between spins and electric dipoles? If yes, what are
the precise quantities involved in the second term? Are they
only magnetoelectric, or rather also involve electric and/or
magnetic properties? Answering such questions will help in
designing systems with large EC response.

The aim of this Letter is to resolve all these issues by
(1) conducting atomistic-based simulations, (2) developing a
simple model that can reproduce these simulations, and (3)
using such simulations and model to gain a deep microscopic
insight. We demonstrate that the EC coefficient of multifer-
roics can be thought of as having two parts, each associated
with different physical quantities.

Here we adopt the effective Hamiltonian (Heff ) approach
developed in Ref. [35] to study disordered Bi1−xNdxFeO3

(BNFO) alloys. Heff parameters are provided in the Sup-
plemental Material (SM) [36]. This Heff successfully repro-
duced the temperature-versus-compositional phase diagram
of BNFO. It predicts a R3c ground state for small Nd com-
positions and a Pnma phase for larger concentrations, with
intermediate complex states in-between. Moreover, within the
compositional range for which the R3c phase is the ground
state, the ferroelectric Curie temperature TC was numerically
found to significantly decrease with the Nd composition while
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the TN Néel temperature is mostly independent of concentra-
tion, which also agrees with measurements [37–39]. The total
internal energy of this Heff can be expressed as a sum of two
main terms

Etot = EBFO({ui}, {ηH}, {ηI}, {ωi}, {mi})

+ Ealloy({ui}, {ωi}, {mi}, {ηloc}) , (1)

where EBFO is the Heff of pure BiFeO3 and Ealloy characterizes
the effect of substituting Bi by Nd ions [40–46]. The Heff of
BNFO contains four types of degrees of freedom: (i) the local
soft mode {ui} centered on the A site of Bi or Nd ions in
the five-atom unit cell i (which is proportional to the local
electric dipole moment of that cell [47,48]); (ii) the strain
tensor gathering homogeneous {ηH} and inhomogeneous {ηI}
contributions [47,48]; (iii) the pseudovectors {ωi} that repre-
sent the oxygen octahedral tiltings [49]; and (iv) the magnetic
moments {mi} centered on Fe ions [50].

We employ this Heff within Monte Carlo (MC) simulations
on 12 × 12 × 12 supercells (containing 8,640 atoms) with
periodic boundary conditions and inside which Bi and Nd ions
are randomly distributed over the A sublattice. 20,000 MC
sweeps are used for equilibration and an additional 20,000
MC sweeps are employed to compute statistical averages at
finite temperature, to obtain converged results. We also aver-
age our results over 10 random Bi/Nd distributions, to mimic
well-disordered BNFO solid solutions.

Regarding the linear EC coefficient αγ , it is the derivative
of the temperature with respect to electric field at constant
entropy. It can be obtained from MC simulations by taking
advantage of the cumulant formula [16,17,51]

αγ = − Z∗alatT

{
〈uγ Etot〉 − 〈uγ 〉〈Etot〉

〈Etot
2〉 − 〈Etot〉2 + 21(kBT )2

2N

}
, (2)

where Z∗ is the Born effective charge associated with the local
mode, alat represents the five-atom lattice constant, T is the
temperature, uγ is the γ -component of the supercell average
of the local mode with γ = x, y, or z (note that the x, y, and z
axes are chosen along the pseudocubic [100], [010] and [001]
directions, respectively), Etot is the total internal energy given
by the Heff , kB is the Boltzmann constant, N is the number of
sites in the supercell, and 〈 〉 defines the average over the MC
sweeps at a given temperature [52]. In the following, we will
denote as α the quantity defined by αx+αy+αz√

3
. Such a definition

corresponds with the EC response for an electric field applied
along [111], which is the maximal response within a R3c state.

Figure 1 shows the EC coefficient as a function of
temperature for four different Nd compositions in disor-
dered Bi1−xNdxFeO3. The results of Fig. 1 are obtained
by starting from 10 K adopting a R3c phase and then pro-
gressively heating up the BNFO solid solutions up to the
composition-dependent Curie temperature, TC (for all in-
vestigated temperatures displayed in Fig. 1, the disordered
Bi1−xNdxFeO3 alloys possess the R3c phase from 0 K and up
to TC). This R3c state is characterized by a polarization lying
along [111] and oxygen octahedra tilting in an antiphase fash-
ion about this polarization’s direction. These solid solutions
also exhibit a G-type antiferromagnetic-to-paramagnetic tran-
sition at a Néel temperature TN, which is mostly independent

FIG. 1. Electrocaloric coefficient α as a function of the temper-
ature for different compositions in disordered Bi1−xNdxFeO3 alloys:
(a) Bi0.95Nd0.05FeO3; (b) Bi0.9Nd0.1FeO3; (c) Bi0.85Nd0.15FeO3; and
(d) Bi0.835Nd0.165FeO3. The solid green lines represent the fit of the
MC results by the second line of Eq. (11), i.e., α = T0a′ (T )

Cph
Psε0χ +

T0b′ (T )
Cph

Ls
∂Ls
∂Ps

|
T
ε0χ , where a′(T ) = A0 + A1T (A0 and A1 being fitting

constants), and Cph and b′(T ) are also fitting parameters. The solid
blue lines display the fit of the MC results by its first contribution,
T0a′ (T )

Cph
Psε0χ . The solid brown lines correspond to the fit of the MC

results by its second contribution, T0b′ (T )
Cph

Ls
∂Ls
∂Ps

|
T
ε0χ (see text).

of the composition and equal to �660 K [35]. The SM [36]
provides some finite-temperature properties above TC.

Let us first focus on Fig. 1(a) that corresponds to a con-
centration of Nd equal to 5%. The calculated TC � 940 K
and TN � 660 K of Bi0.95Nd0.05FeO3 are in rather good
agreement with the measurements of TC � 970 K and TN �
650 K [38,39]. For any investigated temperature, α basically
monotonically increases when the system is heated up to
the Néel temperature. It then adopts a small peak around
TN, which is found to originate from the coupling between
polarization and magnetism—we verify this by running Heff

simulations in which the coupling between local modes and
magnetic moments is turned off. The EC coefficient then
significantly strengthens when increasing the temperature
from the end of this � TN-centered peak and up to TC.
Our predicted big value of α around TC is of the order
of �2.6 × 10−7 K m/V. It is thus large and close to the
experimental data of 2.5 × 10−7 K m/V at T � 499 K in
PbZr0.95Ti0.05O3 films [7] (the largest observed α is equal
to 22 × 10−7 K m/V and has been found in a BaTiO3 sin-
gle crystal, see Ref. [53]) [54]. Note that Heff techniques
have been demonstrated in Refs. [16,17] to accurately re-
produce the EC coefficients of ferroelectrics and relaxor
ferroelectrics, such as those reported in BaTiO3 [53,55] and
Pb(Mg,Nb)O3 [56].

Let us now concentrate on other compositions in disor-
dered Bi1−xNdxFeO3 alloys. Figures 1(b) to 1(d) show the
dependence of the EC coefficient when the Nd composition
is equal to x = 0.10, 0.15, and 0.165, respectively. The Curie
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temperature TC noticeably decreases when increasing the Nd
composition, as is consistent with observations and computa-
tions [35,37–39]. Consequently, the two critical temperatures
coincide, i.e., TC = TN, for a Nd concentration of 16.5%.
Figures 1(b) to 1(d) especially reveal that α at the Néel tem-
perature is enhanced when the Nd composition increases, but
it becomes more difficult to see its associated peak.

To understand the results in Fig. 1, we use a Landau
free-energy potential F (P, L, E, T ) in which we substitute po-
larization P and G-type antiferromagnetic (AFM) moment L
by their equilibrium values Ps and Ls found from minimization
of free energy: ∂F

∂P |
P=Ps,E,T

= 0 and ∂F
∂L |

L=Ls,E,T
= 0. The min-

imized free energy Fs(E, T ) = F (Ps, Ls, E, T ) has the form

Fs(E, T ) = 1
2 a(T )P2

s (E, T ) + 1
4βP4

s (E, T )

− EPs(E, T ) + 1
2 b(T )L2

s (E, T )

+ 1
4κL4

s (E, T ) + 1
2 cL2

s (E, T )P2
s (E, T ) , (3)

where E is the electric field.
Such an equation implies that the polarization implicitly

depends on magnetism because of the 1
2 cL2

s (E, T )P2
s (E, T )

term. This equation is similar to the one used in Ref. [33]. The
entropy described by this free energy Fs(E, T ), composed of
dipoles and spins, can then be obtained as

SF (E, T ) = − dFs

dT

∣∣∣∣
E

= −a′(T )

2
P2

s (E, T ) − b′(T )

2
L2

s (E, T ) ,

(4)

where a′ = da/dT and b′ = db/dT . Note that here we took
into account that Ps and Ls are found from minimization of the
free energy.

In the case of a magnetic phase transition and presence of
polarization, we can consider two parts of the total entropy
S(E, T ): A first one due to electric dipoles and spins [the
active part treated by the Landau potential above, with entropy
SF (E, T )] and a second one due to the rest of the lattice [the
inert part that can be considered to be a trivial collection
of harmonic phonons, with entropy Sph(T )] [57,58]. For an
adiabatic process, we have


S(E, T ) = 
SF (E, T ) + 
Sph(T ) = 0 . (5)

Let Cph denote the heat capacity associated with the back-
ground lattice modes. Then the change of lattice entropy from
an initial state (0, T0) to the final state (E, T ) is given by


Sph =
∫ T

T0

Cph

T
dT ∼= Cph ln

( T

T0

)
. (6)

Consequently, combining Eqs. (5) and (6) leads to

Cph ln

(
T

T0

)
= −
SF = 1

2
a′(P2

s − P2
0

) + 1

2
b′(L2

s − L2
0

)
.

(7)
Here Ps = Ps(E, T ), P0 = Ps(0, T0), Ls = Ls(E, T ), L0 =
Ls(0, T0), where T0 is the initial temperature and T = T0 +

T is the final temperature (
T represents the temperature
change). Solving this equation with respect to T/T0 yields

(T0 + 
T )/T0 = e[a′(P2
s −P2

0 )+b′(L2
s −L2

0 )]/2Cph . (8)

FIG. 2. Temperature dependence of some properties in disor-
dered Bi0.95Nd0.05FeO3 alloys, as obtained from our MC simulations:
(a) the macroscopic polarization Ps; (b) the average between the
three diagonal elements of the dielectric susceptibility; (c) the AFM
vector; and (d) the derivative dLs/dPs.

For small 
T :


T = T0
[
a′(P2

s − P2
0

) + b′(L2
s − L2

0

)]
2Cph

. (9)

One can then derive the following expression for α [10,16]:

α = ∂
T

∂E

∣∣∣∣
S

≈ T0a′(T )

2Cph

∂P2
s

∂E

∣∣∣∣
T

+ T0b′(T )

2Cph

∂L2
s

∂E

∣∣∣∣
T

. (10)

Here we assume that, since the adiabatic temperature
change is small as compared to the temperature, the constant-
S derivatives can be evaluated at a constant T = T0. One can
write

α = T0a′(T )

Cph
Psε0χ + T0b′(T )

2Cph

∂L2
s

∂Ps

∣∣∣∣
T

∂Ps

∂E

∣∣∣∣
T

= T0a′(T )

Cph
Psε0χ + T0b′(T )

Cph
Ls

∂Ls

∂Ps

∣∣∣∣
T

ε0χ , (11)

where ε0 is the vacuum permittivity and χ is the dielectric
susceptibility. Finally, let us note that one could try to ap-
proximate Cph by adding a kB contribution for each degree
of freedom belonging to the trivial—harmonic—part of the
system. However, it is not obvious how to count the exact
number of active and inactive variables in the framework of
a Landau theory; we thus treat Cph as an adjustable parameter.
Note that we did not fit Cph alone but rather the ratio of
a′(T )/Cph and b′(T )/Cph.

As shown by the green lines of Fig. 1, the second line
of Eq. (11) fits well the MC data, when (1) using the Ps,
χ , Ls and ∂Ls

∂Ps
[59] obtained by our Monte Carlo simulations

(these four quantities are shown in Fig. 2 for the case of a
5% Nd composition); and (2) assuming that Cph and b′(T )
are fitting constants, while a′(T ) = A0 + A1T with A0 and
A1 are fitting parameters [60]. Since its validity is confirmed
by Fig. 1, the second line of Eq. (11) can now be used
to gain an insight [36] into the results of Fig. 1, via the
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decomposition of α into its two terms—that are T0a′(T )
Cph

Psε0χ

and T0b′(T )
Cph

Ls
∂Ls
∂Ps

|
T
ε0χ . The first contribution has precisely the

analytical form of the EC coefficient for nonmagnetic systems,
see Refs. [16,17]. It is shown by the blue lines in Fig. 1, and
is the one that contributes the most to the total α for any
composition. It increases with temperature and is driven by the
corresponding increase in dielectric susceptibility, however,
moderated by the concomitant decrease in polarization [see
Figs. 2(b) and 2(a)]. This first contribution implicitly depends
on magnetism because of the coupling between polarization
and antiferromagnetism, as evidenced in the change of behav-
ior of the polarization and in the occurrence of a plateau in the
dielectric response near TN (such behavior of χ has been re-
ported in other multiferroics [42,61]). The second contribution
of Eq. (11) is depicted in brown lines in Fig. 1, and is basically
independent of the investigated composition for any tempera-
ture. As evidenced in Fig. 1, it is the one responsible for the
small peak of α found near the Néel temperature. This small
peak becomes more difficult to see in the total EC coefficient
(shown in green) when the Nd composition increases simply
because the first contribution provides much larger values than
the second contribution. Figures 2(c) and 2(d) also reveal that
this small peak originates from the activation and then sharp
increase of the magnitude of ∂Ls

∂Ps
near TN. This derivative for

temperatures far away below TN is then basically a constant
that characterizes intrinsic magnetoelectric coupling—which
is related to the c constant of Eq. (3). The second term of
Eq. (11) tells us that the EC coefficient of a multiferroic can
be optimized even at temperatures far away TN in systems
possessing strong coupling between polarization and mag-
netic ordering. (Sr, Ba)MnO3 films may thus be a system of
choice to investigate electrocaloric effects due to its strong
magnetoelectric coupling [62–64].

The now-elucidated effect of ∂Ls
∂Ps

on α near TN can be
further used to address the finite-size effects in our compu-
tations of the EC coefficient. It is known that such a size
effect broadens the magnetic transition when decreasing the
supercell size (see the SM [36]) [65,66], and we also checked
that the magnitude of the second contribution of α around
TN increases when increasing such size. It will thus be more
realistic, regarding what to expect in experiments, to rather
adopt a Ls = A|TN − T |β power law (see Refs. [65,67]) near
the Néel temperature, where A and β are coefficients. Conse-
quently, we (1) chose to replace, around TN, the MC data for
Ls by the result given by such power law with β equal to 0.5
(mean-field value); (2) continue to still use the MC data for
Ls for temperatures far away (below) the Néel temperature;
and (3) extract A by imposing that this power law of item
(1) matches the MC data of item (2). Using the new resulting
∂Ls
∂Ps

along with all the previous other quantities in Eq. (11)
(including the temperature behavior of the polarization) pro-
vides the data given in Fig. 3 for the second contribution
but also total EC coefficient in disordered Bi0.95Nd0.05FeO3

alloys. The aforementioned change of Ls’s behavior, that is a
more abrupt change near TN, leads to a narrower and stronger
peak of α close to the Néel temperature. The second contri-
bution now amounts for 42% of the total EC coefficient near
the magnetic transition. The second result is in-line with the
phenomenological theory of Edström et al. [33] predicting

FIG. 3. Same as Fig. 1(a) but now using a different ∂Ls
∂Ps

(see text)
in the second line of Eq. (11).

that the magnetic contribution can reach approximately 60%
of the electric contribution at the magnetic transition, and
thus enhance the EC effect, in epitaxial multiferroic SrMnO3

systems under a tensile strain of 2.63%—for which TN = TC.
Our study explains why it is the case thanks to Eq. (11) that
not only reproduces atomistic results but also and especially
provides an insight into the microscopic origins of the EC
effects in a multiferroic. We also used a larger supercell and
such power law of Ls with different β, and found that our
qualitative results are still valid for any reasonable choice of
β (see Fig. S3 of the SM [36]). Note that the peak of Fig. 1(a)
at the Néel temperature is significantly less pronounced than
in Ref. [33] for two possible reasons. The first one is that such
a peak depends on the size of the simulation supercell (see
the SM [36]) and the second one is that the magnetoelectric
coupling is weaker in BiFeO3 [42] than in SrMnO3 [33].
Fluctuations within the Heff are also discussed in the SM [36].

In summary, an atomistic effective Hamiltonian scheme
was used to compute finite-temperature electrocaloric coef-
ficients in the rare-earth-substituted BiFeO3 multiferroic. The
results are then interpreted via the development of a model
that reproduces these computational data. EC coefficients
can be decomposed in two main terms. The first term takes
its largest value at the Curie temperature and explicitly de-
pends on the polarization and dielectric susceptibility, that are
both implicit functions of magnetic ordering and strength be-
cause of magnetoelectric couplings. The second term adopts
a peak near the Néel temperature and is proportional to the
antiferromagnetic vector, the polarization derivative of the an-
tiferromagnetic vector and the dielectric susceptibility. Such
findings therefore suggest an original way to induce large EC
coefficients by simultaneous optimization of electric, mag-
netic, and magnetoelectric properties at a selected temperature
below the Néel temperature: (1) the dielectric susceptibility
should be large; (2) the antiferromagnetic vector should be
strong; and (3) the magnetoelectric coupling ∂Ls

∂Ps
should be

large [68]. Our results and phenomenology should be valid
for all magnetoelectric multiferroics, with the exception of
those for which a magnetic Dzyaloshinskii-Moriya interaction
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involving the polarization (e.g., the spin-current model) is im-
portant. We hope that the present Letter deepens the fields of
multiferroics and important subtle cross-coupling properties
such as electrocaloric effects.
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