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Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry

P. Kokhanchik ,1 H. Sigurdsson,1,2 B. Piętka ,3 J. Szczytko ,3 and P. G. Lagoudakis 1,2,*

1Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
2School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

3Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland

(Received 17 September 2020; revised 12 February 2021; accepted 15 February 2021; published 26 February 2021)

We investigate a photonic device consisting of two coupled optical cavities possessing Rashba-Dresselhaus
spin-orbit coupling, TE-TM splitting, and linear polarization splitting that opens a tunable energy gap at the
diabolic points of the photon dispersion; giving rise to an actively addressable local Berry curvature. The
proposed architecture stems from recent advancements in the design of artificial photonic gauge fields in liquid
crystal cavities [K. Rechcińska et al., Science 366, 727 (2019)]. Our study opens perspectives for topological
photonics, room-temperature spinoptronics, and studies on the quantum geometrical structure of photonic bands
in extreme settings.
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Introduction. Shaping and molding the optical proper-
ties in structured microscale systems (e.g., photonic crystals)
has both wide and important impact in quantum optics, in-
formation transfer, light-matter interactions, and for future
optoelectronic and spinoptronic devices [1]. Perhaps one of
the most promising outcomes of engineering cavity photon
dispersions is access to photonic analogs of electronic solid
state physics where the role of the electron spin is instead
played by the vectorial composition of the photon polariza-
tion. Indeed, designing artificial gauge fields for photons [2]
has resulted in a surge of research dedicated to topological
photonics [3,4] and synthesis of photonic spin-orbit coupling
(SOC) Hamiltonians [5–7] in a similar spirit to advancements
in cold atoms [8] and solids [9].

Recently, flexible liquid crystal (LC) microcavities have
displayed an amazing ability to tune their cavity photon dis-
persions between the TE and TM polarized modes, realizing
synthetic spin-orbit coupling of light [10,11]. The flexibil-
ity stems from the voltage dependent orientation of the LC
molecular director allowing one to control the dielectric tensor
of the cavity by adjusting the voltage applied to the LC.
Moreover, since LC cavities operate at room-temperature con-
ditions they are highly favorable in bringing complex applied
photonic architectures reliant on artificial gauge fields, and
topological photonics, closer to commercial use.

With this development, a new generation of devices can be
constructed of compound cavity systems which hybridize dis-
tinct gauge fields in different cavities to produce more exotic
photonic gauge fields [12] [see Fig. 1(a)]. Double microcavity
systems have already been studied in both the weak coupling
regime (i.e., photon lasing) [13–15] and in the strong-coupling
regime [16–18]. Of interest, it was shown in longitudinally
coupled cavities [19] that exciton-polariton quasiparticles
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possessed excitation power-dependent spin textures appear-
ing from interplay between their inherited photonic SOC and
exciton-exciton interactions. Although anisotropic spinor po-
lariton interactions can produce effective magnetic fields for
topological purposes [20], it is unpractical in a pure photonic
setting where nonlinearities are weak. On the other hand,
compound LC cavity systems have not been considered until
now to provide access to new photonic gauge field physics.

Another equally important advantage of combining two
microcavities is the appearance of a nontrivial Berry curva-
ture [21], which plays a significant role in physics. Recently,
the non-Abelian nature of a cavity photon gauge field was
intimately linked to high energy physics [22] through iden-
tification of terms shared between photon spinor equation of
motion and the Yang-Mills model. The Berry curvature is
linked with transport phenomena which includes the anoma-
lous velocity that gives rise to a Hall current [23] and also the
quantum Hall effect [24]. Also it reforms interactions in the
Berry-Fermi liquid theory [25] and it is deeply connected to
crystal polarization in solid state physics [26]. Finally, Berry
curvature quantifies the properties of topological materials
such as 3D topological insulators, Weyl semimetals, Dirac
materials, etc. Given the importance of the Berry curvature,
the ability to design a system that readily produces Berry
curvature for photons at room temperature without any exter-
nal magnetic fields, photoresponsive materials, or nonlinear
high-intensity effects is highly demanded.

In this work we demonstrate how a simple system of two
coupled microcavities containing LCs, as shown in Fig. 1(a),
each possessing different SOC mechanisms give rise to a gap
opening at photonic Dirac points [27,28] with the formation
of nonzero local Berry curvature [29] which quantifies impor-
tant physical properties like the Chern number and intrinsic
anomalous Hall conductivity in electron systems. We also
show that the given Berry curvature distribution generates
anomalous Hall drift for photon wave packets in a potential
gradient with band dependent Zitterbewegung.
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FIG. 1. Scheme of the double microcavity system and the effective magnetic fields. (a) Cavity structure showing the refractive index
ellipsoid. Blueish stacked layers indicate distributed Bragg reflectors (DBRs). The ordinary and extraordinary refractive indices of the LC are
denoted by noi and nei in the ith cavity. (b) and (c) Effective RD and OSHE induced magnetic fields (orange arrows), respectively, belonging to
each cavity. In (c) we do not take into account the additional static XY splitting term in Eq. (4) (i.e., β = 0).

Results. We consider a double microcavity like shown in
Fig. 1(a) where both cavities are filled with a LC. The bire-
fringence of the LC in the notation given in Fig. 1 is written
�ni = nei − noi where i denotes the cavity in question. The
effective refractive index for x-polarized light is written

neff,i = noinei√
n2

oi cos2 (ϕi ) + n2
ei sin2 (ϕi )

, (1)

while for y-polarized light the refractive index is always equal
to noi for the ith cavity. For normal incident light of wave-
length λ the resonance condition for horizontal and vertical
polarized light (along the x and y axis, respectively) can be
written

mxi = 2dineff,i

λ
, myi = 2dinoi

λ
, (2)

where di denotes the ith cavity size.
It was recently shown that a photonic equivalent of equal

Rashba-Dresselhaus (RD) SOC can be synthesized in a sin-
gle LC cavity [11] through voltage dependent tuning of its
LC director. There, cavity modes of orthogonal polarizations
and opposite parity were tuned into resonance by rotating
the molecular director such that their coupling resulted in
an effective RD SOC for the cavity photons. Here the LC
filled cavity in our double cavity system is taken to possess
a RD Hamiltonian which, in reciprocal-space representa-
tion and circular polarization basis of the cavity field |�〉 =
(ψ+, ψ−)t , is written

ĤRD = h̄2k2
x

2Mx
+ h̄2k2

y

2My
− 2αkyσ̂z. (3)

Here σ̂x,y,z are the Pauli matrices, Mx,y is the cavity pho-
ton mass along the x and y planar coordinates, kx,y =
k[cos (ϕ), sin (ϕ)] are the in-plane momenta, and α is the
strength of the RD SOC. The last term in Eq. (3) can be rep-
resented as an effective magnetic field BRD = (0; 0; −2αky )
[see Fig. 1(b)] acting on the photon pseudospin S = 〈σ̂〉 where
σ̂ = (σ̂x; σ̂y; σ̂z ) is the Pauli matrix vector.

On the other hand, the second cavity in our double LC
cavity system is tuned to possess two polarization dependent
mechanisms in correspondence with recent studies [10,11].
First, a splitting between the TE and TM polarized modes
which results in a unique photonic SOC described by an

effective in-plane magnetic field which winds itself twice
around the momentum space origin, whereas, in comparison,
Rashba and Dresselhaus SOCs wind only once. The TE-TM
splitting results in the optical spin Hall effect (OSHE) [30]
and is a source of multiple interesting features relevant to
topological photonics [27,31,32]. Second, a static splitting
term between the linearly polarized modes of the photons
(referred here as a XY splitting). Such cavity can be described
by the Hamiltonian

ĤOSHE =
⎛
⎝ h̄2k2

x
2Mx

+ h̄2k2
y

2My
β + γ k2e−i2ϕ

β + γ k2ei2ϕ h̄2k2
x

2Mx
+ h̄2k2

y

2My

⎞
⎠. (4)

The TE-TM and XY splitting are denoted by γ and β,
respectively, in Eq. (4). Note the 2ϕ dependence indicat-
ing the double winding of the effective in-plane magnetic
field BOSHE = [β + γ (k2

x − k2
y ); 2γ kxky; 0] [see Fig. 1(c)]. We

stress that the acronym “OSHE” is just used to differentiate
from ĤRD since “TE-TM + XY ” is a bit cumbersome. The
optical spin Hall effect should not be confused with spin Hall
or valley Hall effects [30] as we are not considering fermions
undergoing impurity scattering or in external electric fields.

As pointed out in recent works [32,35], the presence of
both TE-TM and XY splitting in a single cavity leads to
two energetically shifted parabolas with different effective
masses which intersect into two tilted Dirac cones located at
(kx, ky) = (0,±√

β/γ ), also referred as diabolical points [see
Fig. 2(a)]. Recently, this Hamiltonian was realized in single
microcavity with embedded quantum wells and operating in
the strong-coupling regime [32], as well as in polariton mi-
crocavity based on an optical birefringent 2D perovskite [36].
There, the emergent spinor polariton modes (two-band sys-
tem) were subjected to an external out-of-plane magnetic field
which, when combined with ĤOSHE, resulted in a topological
gap opening at the Dirac points and formation of nonzero
Berry curvature in momentum space.

The fact that each Hamiltonian given by Eqs. (3) and (4)
can be easily realized in a double cavity setting provides an
opportunity to explore a new regime of local photonic Berry
curvature. In order to realize a gap opening at the Dirac cones
of ĤOSHE for just cavity photons, instead of using magnetically
susceptible polaritons [32] (practically inaccessible in organic
microcavities), we propose a four-band system of two coupled
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FIG. 2. Gap opening of the hybridized OSHE and RD double cavity system. Dispersions (normalized reflection intensities using diagonally
polarized incident light) of the (a) single TE-TM + XY cavity where we mark the parabolas intersection, (b) single RD cavity, and (c) both
cavities coupled calculated using Berreman method [33]. In (a)–(c) we have fitted the energy bands from Eqs. (3)–(5), respectively, as solid
red lines with a vertical black marker in (c) indicating the smallest splitting between the central bands. (d) Berry curvature �(2)

z calculated for
the second lowest band, and the QGT components (e) g(2)

xx , (f) g(2)
xy = g(2)

yx , and (g) g(2)
yy ; (h) Berry curvature �(2)

z for larger LC director angle. The
color scale in (h) is saturated to match (d). Parameters for Berreman calculations are in [34].

cavities,

Ĥ =
(

�E σ̂0 + ĤOSHE Jσ̂0

Jσ̂0 ĤRD

)
. (5)

Here �E is a detuning parameter between the OSHE and RD
cavities, σ̂0 is the 2 × 2 identity operator, and J > 0 denotes
coupling between the cavities. The photonic hybridization of
the two subsystems ĤRD and ĤOSHE can then achieve a similar
gap opening and finite local Berry curvature like reported in
[32] but with zero Chern number since our system is topo-
logically trivial. Instead of an out-of-plane magnetic field that
breaks time-reversal symmetry and opens a gap at the Dirac
points, our system instead breaks inversion symmetry through
the hybridization of the two cavities. One cavity possesses
TE-TM and XY splitting giving rise to Dirac cones in one
subsystem, while the other has the RD SOC which, when cou-
pled with the former, breaks inversion symmetry and opens
the gap at the Dirac points with consequent emergence of
nonzero local Berry curvature. Indeed, Ĥ is symmetric under
time reversal as follows from Maxwell equations, whereas it
is not for inversion I = σ̂0 ⊗ σ̂x,

IĤ (−k)I−1 �= Ĥ (k). (6)

We note that an empty cavity (no LC) can possess TE-TM
splitting when the photonic mode is shifted relative to the
center of the DBRs stopband [37], and XY splitting can be
implemented by creating an asymmetric microcavity [38].
However, the experimentally reported TE-TM splitting values
for an empty microcavity are of the order of tens of μeV [39],
while the TE-TM splitting values in LC cavity are measured
in the meV scale providing comparable scales for α, β, and
γ values and allowing for an observable gap opening. The

Stokes parameters S and field distribution of the double cavity
transmitted light are detailed in Ref. [40].

In Figs. 2(a) and 2(b) we calculate the dispersion of each
uncoupled cavity belonging to Eqs. (4) and (3), respectively.
The diabolic points, or Dirac cones, are marked with the
black lines in Fig. 2(a). When the two systems are coupled
using Eq. (5) we observe a splitting between the two central
bands around the Dirac point which obtain high concentration
of Berry curvature satisfying �z(k) = −�z(−k). The odd
parity of the curvature implies that the system is in a topo-
logically trivial phase whereby integrating over �z(k) gives
a Chern number of C = 0. Therefore, our system should not
be confused with Chern insulators or Hall phases, but instead
as means of generating local Berry curvature which can be
applied to manipulate photon wave packet transport properties
[41]. In order to characterize the properties of the bands in
the double cavity system, we calculate the components of
the quantum geometric tensor (QGT) [35,42], whose real part
contains the quantum metric (distance between eigenstates),
and the imaginary part determines the Berry curvature:

T (n)
i j (k) =

∑
m �=n

〈mk|∂ki Ĥ |nk〉〈nk|∂k j Ĥ |mk〉
(Em(k) − En(k))2 , (7)

g(n)
i j = Re

(
T (n)

i j

)
, �(n)

z = −2Im
(
T (n)

xy

)
, (8)

where (i, j) = (x, y), n = (1, 2, 3, 4) denotes the number of
the band from bottom to top in energy, and |nk〉 and En(k) are
the k-dependent eigenstate and eigenenergy of Ĥ .

The QGT components for the second lowest band of
this system are shown in Figs. 2(d)–2(g) revealing that the
strongest Berry curvature appears at the anticrossing of the
two central bands of the system (marked with a white line
dot). The black segment in Fig. 2(c) shows the anticrossing,

L081406-3



P. KOKHANCHIK et al. PHYSICAL REVIEW B 103, L081406 (2021)

marking the opening point of the Dirac cone corresponding
to the white point in Fig. 2(d). Figure 2(h) shows that the
Berry curvature extremum is shifted when the LC director is
changed, underlining tunability coming from the LC cavities.
We note that the QGT components for a four-band system
can be directly measured [35]. The QGT components for the
remaining three bands are given in Ref. [40].

For all effective masses we use notations
Mx1, My1, Mx2, My2, where indices (1,2) correspond to
ĤOSHE,RD cavities, respectively. We obtain β = 0.77 meV,
γ = 0.72 meV μm2, Mx1 = My1 = 0.054 meV ps2 μm−2,
Mx2 = 0.89Mx1, My2 = 0.92Mx1, �E = −0.8 meV, α = 3.25
meV μm, and J = 3.6 meV by fitting the numerically
calculated dispersions [red lines in Figs. 2(a)–2(c)]. The
effective mass Mx2 does not affect the gap opening, nor does
it affect the position of the Dirac cones, it only affects the
width of the distribution of the QGT parameters along the
kx axis. It can therefore adopt a typical value obtained using
the methods of Ref. [11]. We note that the plotted energies
belonging to Eq. (5) are shifted to match the absolute energies
obtained through numerics.

For the case of all masses being equal and kx = 0 and
�E = 0, the analytical expression for the energies becomes

E = h̄2k2
y

2M
± 1√

2

[
2J2 + 4α2k2

y + ε2

±
√

ε2
[
ε2 + 4J2 − 8α2k2

y

] + 16α2k2
y

[
J2 + α2k2

y

]]1/2

,

(9)

where ε = (β − γ k2
y ). If RD SOC is absent (α = 0) we obtain

two pairs of bands separated in energy by 2J . Instead of
two Dirac points there are now four points located at the
band crossings ky = ±√

β/γ . When α �= 0 this degeneracy
is lifted resulting in Berry curvature with extremum at the
band anticrossing points [see Fig. 2(d)]. The location of the
extremum is shifted with respect to the original Dirac point
location at ky = ±√

β/γ which, to the leading order, is given
by the roots of the equation,

J2 + 2α2k2
y√

J2 + α2k2
y

= ky

α

[
2α2 − γ

(
β − γ k2

y

)]
. (10)

The solution satisfies |ky| >
√

β/γ corresponding to the an-
ticrossing point (the Berry curvature extremum) shifting to
higher momentum values away from the original Dirac point.

We will now demonstrate the anomalous Hall drift [41,43]
in our system appearing for an accelerated wave packet in
a band with finite Berry curvature. An acceleration in the
positive y direction can be provided by introducing a potential
wedge in the double cavity structure which can be modeled
with V (y) = −v0y where we solve the Schrödinger equation
describing the wave packet motion. We choose two different
initial conditions corresponding to bands n = 2, 3 where a
concentrated maximum of Berry curvature appears close to
the point of avoided crossing [see, e.g., Figs. 2(c) and 2(d)],

|�(r, t = 0)〉 = ∣∣nk0

〉
e−r2/2w2

eik0·r. (11)

Here k0 = 0.5 ŷ μm−1 is chosen for simplicity to avoid
both the effects of strong QGT concentrations and negative
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FIG. 3. The anomalous Hall drift and Zitterbewegung. (a) Photon
wave packet center of mass 〈r〉 moving in a potential gradient along
the y direction. Solid blue and red curves correspond to a packet
initialized in band n = 2 and n = 3, respectively. A finite drift in
the x direction appears due to the presence of Berry curvature �(n)

z

which possesses different signs between the bands causing the blue
and red trajectories to drift in opposite directions. (b) Mean wave
packet momentum 〈ky〉 against its vertical position and (c) the Berry
curvature cross section at kx = 0 of the two bands.

effective mass at low momenta. We also set a typical value for
the potential gradient at v0 = 45 μeV μm−1, and w = 17 μm.
The wave packet center of mass in real and reciprocal space is
defined

〈r〉 =
∫

r〈�|�〉 dr∫ 〈�|�〉 dr
, 〈k〉 =

∫
k〈�̃|�̃〉 dk∫ 〈�̃|�̃〉 dk

, (12)

where �̃ is the Fourier transform of �. Evolving Eq. (11) in
time (40 ps) we observe in Fig. 3(a) the two different solutions
experiencing a drift in along the horizontal in the two opposite
directions because �(n)

z changes sign from band n = 2 to n =
3. The trajectories are not symmetric about 〈x〉 = 0 because
the dispersion relation of the two bands differs. Clear Zitterbe-
wegung oscillations (which depend on the gradient and initial
momentum) can be observed in the trajectories and become
strong when the wave packet moves through the anticrossing
region of the dispersion. Such oscillations appear for Dirac
electrons experiencing interference between their positive and
negative energy states and, although quite challenging, can
be artificially replicated in photonic systems [44] like ours. In
Fig. 3(b) we plot 〈ky〉 against 〈y〉 showing monotonic increase
due to the potential gradient pushing the packet. The satura-
tion of the drift in Fig. 3(a) corresponds to the wave packet
having passed through the strong Berry curvature region �(n)

z
whose cross section is shown in Fig. 3(c). These anomalous
optical transport effects can be tuned readily by changing the
LC molecular angle by applying voltage across the cavity.

The experimental complexity of the system is primarily
reduced to the task of manufacturing a double cavity structure.
Cavities filled with LCs should be thin enough to allow for a
large separation between adjacent modes. At the same time,
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the contacts and internal DBR also need to be thin to im-
plement finite observable coupling between different cavities.
In principle, this is only a technical challenge that could be
solved by exploiting a thin polymer DBR or exfoliated DBR
[45] suspended in a LC microcavity.

Discussion. We have demonstrated a purely photonic im-
plementation of achieving measurable local Berry curvature
by construction of a Hamiltonian describing two optical
cavities possessing distinct SOC mechanisms. These SOC
mechanisms can today be readily designed through the recent
advancements in tunable LC microcavities [10,11]. In our pro-
posal, one cavity is composed to a unique photonic SOC effect
stemming from both TE-TM and XY splitting of the cavity
modes leading to a pair of tilted Dirac cones. The second cav-
ity provides an RD SOC which, when coupled with the former
cavity, breaks inversion symmetry and leads to gap opening at
the Dirac points. The opening is associated with the formation
of local Berry curvature which can generate an anomalous
Hall drift. Our results open new possibilities for measuring
fundamental geometrical properties of photonic bands which
are of great interest to the growing field of topological pho-

tonics [4]. The Berry curvature in our system is not reliant
on gyromagnetic materials, polariton susceptibility to exter-
nal magnetic fields, or complicated fabrication of transverse
cavity structures like photonic honeycomb lattices [7,29].

The data that support the findings of this study are openly
available from the University of Southampton repository [46].
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366, 727 (2019).

[12] R. O. Umucalılar and I. Carusotto, Phys. Rev. A 84, 043804
(2011).

[13] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L.
Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii,
Phys. Rev. Lett. 81, 2582 (1998).

[14] S. Michaelis de Vasconcellos, A. Calvar, A. Dousse, J.
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[18] M. Ściesiek, K. Sawicki, W. Pacuski, K. Sobczak, T.
Kazimierczuk, A. Golnik, and J. Suffczyński, Commun. Mater.
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