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Fermi arcs and surface criticality in dirty Dirac materials
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We study the effects of disorder on semi-infinite Weyl and Dirac semimetals where the presence of a boundary
leads to the formation of either Fermi arcs/rays or Dirac surface states. Using a local version of the self-consistent
Born approximation, we calculate the profile of the local density of states and the surface group velocity. This
allows us to explore the full phase diagram as a function of boundary conditions and disorder strength. While
in all cases we recover the sharp criticality in the bulk, we unveil a critical behavior at the surface of Dirac
semimetals, which is smoothed out by Fermi arcs in Weyl semimetals.
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Introduction. Three-dimensional nodal semimetals are ma-
terials where several energy bands cross linearly at isolated
points in the Brillouin zone: two bands in Weyl semimetals
[1,2] and four bands in Dirac semimetals [3–5]. They exhibit
remarkable phenomena related to the relativistic nature of the
low-energy excitations and topological properties of the band
structure [6–9]. In particular, the bulk-boundary correspon-
dence leads in Weyl semimetals to topologically protected
surface-localized states in the form of Fermi arcs that connect
the surface projections of Weyl nodes with opposite chiral-
ity [10–12]. They have been observed using photoemission
spectroscopy in inversion-symmetry-breaking crystals such
as tantalum arsenide (TaAs) [1,13] and niobium arsenide
(NbAs) [2], where their shape and topological properties agree
beautifully with first-principles calculations [14]. In Dirac
semimetals, scattering from the boundary can also produce
propagating surface modes with energies near the bulk band
crossing which, however, are not topologically protected [8].
Experimentally, Dirac semimetals host at least one pair of
Dirac nodes (like in Na3Bi), so that the Fermi surface may
consist of two arcs that bridge the two bulk nodes [15]. The
local properties of the emergent surface states are controlled
by the boundary conditions, which describe how the different
degrees of freedom such as pseudospin and valley index mix
upon quasiparticle reflection from the surface [16–18].

The presence of disorder such as lattice defects or impu-
rities can strongly modify the behavior of clean materials,
or even lead to quantum phase transitions such as Anderson
localization [19]. A new type of disorder-induced quan-
tum phase transition was recently discovered in relativistic
semimetals [20,21], wherein a strong enough disorder drives
the semimetal towards a diffusive metal. Inside the bulk, the
average density of states (DOS) at the nodal point plays the
role of an order parameter since it becomes nonzero above
a critical disorder strength [20,22–29]. This bulk transition
has been intensively studied using both numerical simulations
[30–35] and analytical methods [36–42]. The effects of rare
events have also been much debated [43–52].

How disorder affects the surface states of relativistic
semimetals is much less known. Perturbative calculations

show that the surface states in generic Dirac materials are
protected from surface disorder due to their extension far
into the bulk, which reduces the overlap with impurities [16].
Numerical simulations also indicate that while Fermi arcs in
Weyl semimetals are robust against weak bulk disorder, they
hybridize with nonperturbative bulk rare states as the strength
of disorder gradually increases and completely dissolve into
the emerging metallic bath at the bulk transition [49,53].

In this Letter, we study the effect of weak disorder on
the surface states produced by generic boundary conditions
in a minimal model for both Weyl and Dirac semimetals. We
develop a local version of the self-consistent Born approxima-
tion (SCBA) [42] to compute the DOS profile and the surface
group velocity as a function of disorder strength. While the
SCBA is poorly controlled close to the transition and fails
to produce the exact critical exponents, it still enables one to
capture the qualitative behavior of various observables [54].
In particular, we investigate the full phase diagram in the
presence of a surface and show that it bears similarities with
that of semi-infinite magnetic systems, which exhibit ordinary,
surface, and extraordinary phase transitions [55,56]. We find
that a boundary of a nodal semimetal that hosts Dirac surface
states turns into a metallic state at a critical disorder strength
lower than that in the bulk. Upon further increasing disorder,
the bulk becomes metallic in the presence of the metallic
surface, thus experiencing an extraordinary transition. Yet, in
the Weyl semimetals, the surface states from the Fermi arcs
smooth out surface criticality.

Boundary conditions for a semi-infinite semimetal. The
Nielsen-Ninomiya theorem constrains relativistic semimetals
to host pairs of nodes with opposite Berry charges [57].
A minimal low-energy theory for such materials thus com-
prises two Weyl nodes of opposite chiralities, separated in the
Brillouin zone by a momentum 2b. Below a suitable cutoff
momentum �, the quasiparticles are determined by the bin-
odal Weyl Hamiltonian [29],

H0 = iτzσ ·∂ + τ0σ ·b, (1)

where ∂ = (∂x, ∂y, ∂z ) denotes the gradient operator. In
Eq. (1), we use the Pauli matrices σ = (σx, σy, σz ) and
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FIG. 1. Projection to the surface Brillouin zone (kx, ky ) of bulk
Weyl cones with chiralities +1 (red) and −1 (blue). Surface states
disperse along lines at the Fermi level (orange). (a) Fermi rays
oriented by the vectors e±. (b) Fermi arc with curvature α. (c) Surface
cone with Fermi velocity cos α.

(τx, τy, τz ) for the pseudospin and valley—or chiral—degrees
of freedom, respectively. The identity matrices are denoted
as σ0, τ0. We can formally tune b to describe either a pair
of Weyl cones (b arbitrary) or a single Dirac cone (b = 0)
when additional spatial symmetries prevent the nodes from
hybridizing and opening a gap.

In a semi-infinite material filling the z � 0 half space,
we must supplement the bulk Hamiltonian (1) with proper
boundary conditions (BCs) at the surface. Assuming a generic
BC that can describe not only a free surface, but also a surface
that is covered by various chemical layers, we impose

Mψ |z=0+ = ψ |z=0+ , (2)

where the unitary Hermitian matrix M ensures the nullity of
the transverse current: {M, τzσz} = 0 [17,18]. Two classes of
matrices satisfy these criteria. They are both parametrized by
a pair of angles (θ+, θ−) such that

M1 = τ+(σ · e+) + τ−(σ · e−), (3a)

M2 = (τ · e+)σ+ + (τ · e−)σ−, (3b)

where e± = (cos θ±, sin θ±, 0) are two unitary vectors of the
surface, and μ± = (μx ± iμy)/2 with μ = τ, σ are the chiral
and pseudospin projectors.

The BC 3(a) describes Weyl fermions that retain the same
chirality under scattering from the boundary. The emerging
surface states at the Fermi level distribute along two inde-
pendent Fermi rays pointing in the directions orthogonal to
eχ, stemming from the nodes of topological charges χ = ±1,
respectively, regardless of the distance between the nodes, as
illustrated in Fig. 1(a) (see the Supplemental Material [58]).
This BC breaks the O(2) rotational symmetry in the (x, y)
plane by imposing the rays’ orientations, which must be deter-
mined by microscopic details of the boundary, and thus should
be extremely sensitive to surface roughness [59]. It also mixes
neighboring Landau levels in a background magnetic field,
making Landau quantization ill defined [60]. Seemingly in-
finite Fermi rays extend to the full Brillouin zone and thus
could terminate at another remote pair of Weyl nodes [17].

The BC 3(b), on the contrary, mixes chirality of reflected
quasiparticles, and thus depends on the relative positions of
the Weyl nodes. Without loss of generality, we align the nodes
in the x direction and set b = bex + bzez. (i) For a nonzero half
separation b between the surface projections of the nodes, the
surface states at the Fermi level disperse along a curved Fermi
arc. Its parametric equation reads φ+ − φ− + θ+ − θ− = 0,

where φχ is the angle formed by the momentum measured
from the node of chirality χ with the x axis. This defines
a circular arc with aperture angle 4α and perimeter LFA =
4bα/ sin(2α), as shown in Fig. 1(b), where the angle α =
(π + θ+ − θ−)/2 ∈ [0, π/2] reduces here to θ+ due to the
alignment of the nodes along the x axis (see the Supple-
mental Material [58]). In experiments [13,61,62], Fermi arcs
are usually distorted because of higher-order corrections to
the linear dispersion relation. They can join two Weyl nodes
(our model) but also two Dirac nodes or surface-projected
nodes with higher topological charges, in which case multiple
arcs are attached to the pair. (ii) When b = 0, the surface
states are nontopological and form a single cone with Fermi
velocity v0 = cos α that extends in either the electron or hole
side, depending on the direction of the normal to the surface
[16]. In our case, this corresponds to the positive energies,
as shown in Fig. 1(c). This electron-hole surface asymmetry
persists in the presence of a magnetic field or a gap, where
the dispersion relation also depends on the extra parameter
θτ = (θ+ + θ−)/2 [16]. Note that Fermi rays and arcs give
rise to a nonzero surface DOS at all energies, while the density
of the Dirac surface states shown in Fig. 1(c) vanishes at the
nodal energy.

Treatment of disorder. Pointlike impurities generate disor-
der that is insensitive to the chiral and pseudospin degrees of
freedom. Assuming the density of impurities is uniform in the
bulk, we model such defects by a random, scalar, Gaussian
potential V (r) with zero average and short-range variance
γ δ(r). In an infinite sample, disorder induces a second-order
transition towards a diffusive metal phase above a nonzero
critical value γ ∗, though the critical point is probably avoided
due to rare events [43–52]. The bulk average DOS ρ̄b, which
vanishes on the semimetal side, increases in a power-law fash-
ion, ρ̄b ∼ (γ − γ ∗)β , above the critical point [20,22–29]. As
shown below, the spatially resolved DOS reveals this behavior
for all BC, but also a new surface transition in a single Dirac
cone.

Local self-consistent Born approximation. The boundary
breaks translational invariance along the perpendicular di-
rection. Consequently, the retarded Green’s function of the
clean system, G0(ε, z, z′), depends not only on the distance
z − z′ between the points, but also on the absolute distance
z + z′ to the surface. It satisfies the boundary condition
MG0(ε, 0, z′) = G0(ε, 0, z′). Notice that we omit the explicit
dependence on the momentum k parallel to the boundary for
the sake of brevity. Introducing the disorder-averaged Green’s
function G(ε, z, z′), which satisfies the same boundary condi-
tion, we define the corresponding self-energy � as

{H0 − [ε + �(ε, z)]τ0σ0}G(ε, z, z′) = δ(z − z′)τ0σ0. (4)

Within the SCBA and for pointlike disorder, the self-energy �

is momentum independent in the bulk and proportional to the
unit matrix [42]. In the absence of translational invariance, it
is a function of z and satisfies the self-consistency equation

�(ε, z) = γ

4

∫
|k|<�

d2k

(2π )2
Tr[G(ε, z, z)]. (5)

The solution to Eqs. (4) and (5), where the latter relates the
self-energy at position z to its values at all points, requires the

L081405-2



FERMI ARCS AND SURFACE CRITICALITY IN DIRTY … PHYSICAL REVIEW B 103, L081405 (2021)

FIG. 2. LDOS profile for various disorder strengths �. The bulk
density increases as 1

2 (1 − �−2) above the critical value �∗
b = 1, and

vanishes below. (a) Fermi rays (M1 BC). (b) Dirac surface states (M2

BC) with α = π/4. ρ̄(z) vanishes everywhere for � smaller than the
surface critical value, �∗

s = cos(α) = 0.5. The arrows indicate the
penetration length ξ (�), which diverges for � = 1.

inversion of a non-translationally invariant Green’s function.
The problem is greatly simplified if one assumes that the
spatial variations of the self-energy are small, i.e., if ∂�/∂z �
(ε + �)2 (see the Supplemental Material [58]). In this approx-
imation, we replace G(ε, z, z) with G0[ε + �(ε, z), z, z] in
Eq. (5) so that the self-energy now satisfies a self-consistency
equation in which both sides involve �(ε, z) at the same
position z. We refer to this scheme as the local self-consistent
Born approximation (LSCBA).

In the presence of disorder, the surface band crossing aris-
ing from the M2 BC is shifted from the bulk nodal energy
[63] by −Re�(ε, z). In this case, it is natural to calculate
the density profile, not at a fixed chemical potential, e.g., at
the bulk Fermi level, but at the energy of the local density
minimum, εF(z) = −Re�[εF(z), z]. This allows one to probe
the band crossing structure close to the surface as a function
of the distance to the surface and strength of disorder. To that
end, we introduce the disorder-induced broadening � > 0 as
εF(z)+�[εF(z), z] = i�(z), from which we extract the mini-
mum of the average LDOS at position z. The LDOS is given
by ρ̄ = (Tr ImG)/π . Using the self-consistency equation (5),
it can be rewritten in natural units as

ρ̄(z) = 4π Im�[εF(z), z]

γ�2
= �(z)

��
, (6)

where � = γ�/4π is the dimensionless disorder strength.
Effect of disorder on Dirac surface states. Let us focus first

on the case b = 0. Using the LSCBA (5), we calculate the
self-energy for both BCs leading either to Fermi rays for M1

or to Dirac surface states for M2. The corresponding LDOS
profiles computed using Eq. (6) are depicted in Fig. 2(a) for
Fermi rays, and in Fig. 2(b) for Dirac surface states with
α = π/4. For both BCs, we recover the bulk transition for

infinite z and at the critical disorder strength �∗
b = 1, above

which the LDOS behaves as ρ̄b = 1
2 (1 − �−2) ∝ |� − �∗

b|β
with β = 1. Below this critical value, the LDOS vanishes, as
in infinite systems within the SCBA [42]. Exactly at criticality,
the LDOS profile decreases algebraically as (�z)−1.

Near the surface, however, the LDOS behaves very dif-
ferently depending on the BC. For Fermi rays, disorder does
not impact the density close to the boundary, which remains
always finite since the rays pass through the whole Brillouin
zone [see Fig. 1(a)]. The surface modes populating the rays
propagate diffusively with a decreasing mean free path l =
2/� as we gradually increase the disorder strength, and dis-
solve into the metallic bulk above the semimetal-metal critical
point.

On the contrary, as seen in Fig. 2(b), the local density of
Dirac surface states vanishes above a distance �z = ξ from
the boundary, such that

1 − e−2ξ

2ξ
= �−1 − 1

(tan α)2
. (7)

Hence, Dirac surface states extend into the bulk over this
penetration length ξ ; they spread maximally at bulk criticality
where it diverges like ξ ∼ |� − �∗

b|−ν with ν = 1, which can
be identified with the correlation length exponent.

Indeed, the values of the exponents β and ν agree with
the mean-field values of the critical exponents for the or-
der parameter and correlation length at the three-dimensional
(3D) semimetal-diffusive metal transition computed within
the SCBA [42]. In addition, both ξ and the LDOS vanish at
the disorder strength �∗

s = (cos α)2 < �∗
b, which shows that

a surface transition takes place at �∗
s .

Before we consider the full phase diagram, let us discuss
the validity of the LSCBA. The local approximation is justi-
fied when the derivative of �(z) is small with respect to �(z)2,
which is satisfied close to the surface and deep in the bulk. It
breaks down at intermediate distance to the boundary, �z ∼ 1,
where the solutions of the LSCBA for �z = 0 and for �z � 1
match smoothly. Notice that the exact vanishing of the density
for �z > ξ is an artifact of this local approximation.

The LSCBA leads to the surface density of Dirac surface
states shown as a function of disorder strength � and for

FIG. 3. Surface density of Dirac surface states (b = 0, solid
curves) and Fermi arcs (b = �/10, dashed curves), as a function
of disorder strength �, for several mixing angles between the chiral
degrees of freedom α ∈ [0, π/2]. The Dirac surface states become
metallic above the critical value �∗

s = (cos α)2. Weyl semimetals
avoid this critical point.
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FIG. 4. Phase diagram in the (�,α) plane of Dirac semimetals
hosting single-cone surface states (DSM). Beyond the surface critical
line S : �∗

s = (cos α)2, metallic eigenstates populate the surface
(MS). Beyond the extraordinary line E : �∗

b = 1, the bulk becomes
metallic as well (MS+MB).

various surface Fermi velocities v0 = cos α in Fig. 3. Ex-
cept for nondispersing flat bands (α = π/2), eigenstates do
not populate the Fermi node until a critical disorder strength
�∗

s = v2
0 . This contrasts with 2D Dirac fermions, such as in

graphene or the surface of 3D topological insulators in class
AII where a stand-alone two-dimensional description applies
due to a fully gaped bulk. There, a finite DOS develops at the
nodal point under arbitrary weak disorder [64]. The difference
comes from the ability of the surface states to overcome dis-
order by leaking through the bulk, which is prohibited in the
strictly 2D case.

The corresponding phase diagram, shown in Fig. 4, resem-
bles the one for semi-infinite spin systems [55,56], except for
the absence of an ordinary transition (where the surface and
the bulk develop an order parameter simultaneously). At the
surface critical line �∗

s (α), the boundary turns into a metallic
state, while the bulk remains a semimetal. The bulk undergoes
a transition only at �∗

b > �∗
s , when the surface is already

metallic; this is known as an extraordinary transition. In ad-
dition, the surface and extraordinary critical lines merge at
the special point (α = 0,� = 1). In contrast to spin systems,
the surface transition can only exist on the boundary of three-
dimensional semimetals, but not in infinite two-dimensional
Dirac materials.

The group velocity also reveals a critical behavior at the
surface transition. Using its definition v = ∂kεs [49], where
εs(k) denotes the surface relation dispersion, we express it
as v = v0{1 + ∂ε (Re�)[εF(z = 0), z = 0]}−1 at the surface
nodal level, where v0 is the group velocity of the clean Dirac
surface states (see the Supplemental Material [58]). We com-
pute ∂ε (Re�) by solving Eq. (5) numerically for energies ε

around εF(0). Figure 5 shows that at surface criticality, where
the dispersion relation reads εs ∝ kzs , the group velocity van-
ishes like v ∝ |� − �∗

s |ν(zs−1) with the surface dynamical
exponent zs = 2.

Effect of disorder on Fermi arcs. As shown in Fig. 3,
a nonzero separation b between the surface-projected nodes
generates a nonzero surface density ρ̄s ∝ b2 for arbitrary weak
disorder. This smooths out the sharp surface transition. The

FIG. 5. Group velocity v as a function of disorder strength �, for
several α ∈ [0, π/2] (see legend of Fig. 3). The solid curves are for
Dirac surface states (b = 0); the dashed curves are for Fermi arcs
(b = �/10). Inset: the group velocity is locally orthogonal to the
arcs.

penetration length of a surface state has a minimum at the
middle of the Fermi arc and is infinite at the nodal points [65].
With increasing disorder strength, the Fermi arcs broaden. The
minimal penetration length grows with disorder and diverges
at the extraordinary transition, which reflects dissolving of the
surface states into the bulk [65]. The group velocity computed
for the Fermi arc states at the junctions with the nodal points is
shown in Fig. 5. It always remains finite, which also indicates
that the surface transition is avoided.

Conclusion and outlook. We have studied the full phase
diagram of disordered semi-infinite relativistic semimetals as
a function of boundary conditions and disorder strength. To
that end, we calculated the spatially resolved density of states
and the surface group velocity using a local self-consistent
Born approximation. We have shown that with increasing
the strength of disorder, Dirac semimetals hosting single-
cone surface states undergo a surface phase transition from
a semimetal to a surface diffusive metal, followed by an
extraordinary transition to a bulk diffusive metal. In Weyl
semimetals, this surface transition is smoothed out due to the
finite extension of the Fermi arcs or rays. We found that within
the LSCBA, the critical exponents at the surface and special
transitions equal those computed using the SCBA for the bulk
transition, though we expect they differ in reality, as for the
Anderson transition in semi-infinite systems [66]. We also
expect the multifractality of critical surface states to deviate
from that in the bulk [67,68]. Given that, we hope that our
work will stimulate further analytical and numerical studies
to explore our findings and refine the description of surface
phenomena.
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