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Emergence of spin-active channels at a quantum Hall interface
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We study the ground state of a system with an interface between ν = 4 and ν = 3 in the quantum Hall regime.
Far from the interface, for a range of interaction strengths, the ν = 3 region is fully polarized but ν = 4 region is
unpolarized. Upon varying the strength of the interactions and the width of the interface, the system chooses one
of two distinct edge/interface phases. In phase A, stabilized for wide interfaces, spin is a good quantum number,
and there are no gapless long-wavelength spin fluctuations. In phase B, stabilized for narrow interfaces, spin
symmetry is spontaneously broken at the Hartree-Fock level. Going beyond Hartree-Fock, we argue that phase
B is distinguished by the emergence of gapless long-wavelength spin excitations bound to the interface, which
can be detected by a measurement of the relaxation time T2 in nuclear magnetic resonance.
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Introduction. In the integer quantum Hall effect
(IQHE) [1], a two-dimensional electron gas subjected
to a strong perpendicular magnetic field displays a Hall
conductivity quantized in integral units of e2

h at low
temperatures. These systems are the simplest examples
of topological insulators [2]. Their bulk is insulating, and
the underlying band topology manifests itself in chiral
current-carrying edge states which are protected against
localization. The bulk band topology dictates the charge Hall
and thermal Hall conductances. Further, because the kinetic
energy is quantized into degenerate Landau levels (LLs),
partially filled LLs host strong electron correlations, leading
to quantum Hall ferromagnetism [3,4] and the fractional
quantum Hall effects [5].

It has long been realized that within the constraints of
bulk band topology, a variety of reconstructed edge phases
are possible. Much theoretical work exists on edge reconstruc-
tions, with most reconstructions being driven by electrostatic
considerations: the “desire” of the electron fluid to per-
fectly neutralize the positive background competing with the
“desire” to form incompressible droplets. In the simplest
reconstructions spin plays no role [6–11]. At the edges of
quantum Hall ferromagnets, states with broken spin and/or
edge translation symmetry are known to occur in the Hartree-
Fock (HF) approximation [12–15].

It is clear from previous work that edge reconstructions
can generate counterpropagating pairs of chiral charge modes.
Going beyond this, one can ask whether exchange can lead to
the emergence of a pair of chiral, neutral, spin-active edge
modes. Since spin is involved, it is natural to look for in-
terfaces where at least one of the two bulk states is a QH
ferromagnet.

Motivated by these considerations, we investigate an in-
terface between a ν = 4 singlet region and a fully polarized

ν = 3 region in the HF approximation. In the following, we
will use the words edge/interface interchangeably. Our tuning
parameters are the width of the interface in units of magnetic
length (w̃ = w/�), where the background charge is assumed
to vary smoothly between ν = 4 and ν = 3, and the strength
of the Coulomb in units of the cyclotron energy (Ẽc = e2

�h̄ωc
).

We find two robust phases: For large w̃ we find phase A:
HF single-particle levels are spin polarized and three of them
cross the Fermi energy, as required by the total Sz = 0 in the
ν = 4 bulk and the total Sz = 3/2 in the ν = 3. For smaller
w̃ we find phase B, with spontaneously broken U (1) spin-
rotation symmetry, with a single HF level crossing the Fermi
energy.

Phase A has a pair of counterpropagating, spin-resolved
chiral charge modes in addition to the one chiral charge
mode required by topology. Phase B, as we argue in the
discussion, manifests a pair of chiral, counterpropagating
spin-active neutral modes bound to the interface, in addition
to the required charged chiral. Any probe sensitive to gapless
long-wavelength spin excitations, such as nuclear magnetic
resonance (NMR), will be able to distinguish the two phases.

In the following, we will set up the problem, explain our
computation briefly, and describe the two phases in HF. We
address the important issue of fluctuations beyond HF in the
discussion, before addressing potential experimental signa-
tures. Details of the robustness of the two phases with respect
to the Zeeman coupling (ẼZ = EZ

h̄ωc
), the screening of the in-

teraction, the number of Landau levels kept in our calculation,
and other details, are relegated to the Supplemental Material
(SM) [16].

Edge between ν = 4 and ν = 3 quantum Hall states. The
geometry of the interface between the ν = 4 and ν = 3 QH
systems is shown in Fig. 1. In the noninteracting limit, the ν =
4 bulk will have the Landau levels (LLs) |0 ↑, 0 ↓, 1 ↑, 1 ↓〉
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FIG. 1. A schematic diagram of our setup with an interface
between bulk ν = 4 and ν = 3 IQHE states. The solid line (red
online) is a downstream chiral charged mode required by topology.
The pair of dashed lines (green online) depict either spin-resolved
charged chiral modes (phase A) or gapless spin-active chiral modes
(phase B).

occupied, while the ν = 3 bulk has the LLs |0 ↑, 0 ↓, 1 ↑〉
occupied. At the edge between the two, we expect the 1 ↓ LL
to smoothly cross the chemical potential μ from below as one
moves rightwards (from ν = 4 to ν = 3), leading to a single
chiral charged edge mode with ↓ spin.

As interactions grow we expect a greater tendency towards
spin polarization (QH ferromagnetism). However, the ν = 3
and ν = 4 states polarize at the different values of Ẽc. There
is a range of Ẽc where the ν = 4 bulk remains unpolarized,
while the ν = 3 bulk is fully polarized. Now it is not obvious
how many μ crossings, and hence chiral modes, there should
be: The result will depend on the details of the interface. Our
goal is to study the possible edge phases that can exist as our
tuning parameters w̃, Ẽc are varied.

Our Hamiltonian is

H = h̄ωc

∑
n,k,s

c†
nkscnks + EZ

2

∑
n,k

(c†
nk↓cnk↓ − c†

nk↑cnk↑)

+ 1

2LxLy

∑
q

v(q) : (ρb(q) − ρe(q))(ρb(−q)−ρe(−q)) :

(1)

Using n for the Landau level index and k for the guiding
center index (defined below), the electron density operator
is ρe(x, y) = ∑

s
�†

s (x, y)�s(x, y), where the electron field

operator is �s(x, y) = ∑
n,k �nk (x, y)cnks, with cnks being

canonical fermion operators. v(q) and ρe(q) are the Fourier
transforms of the long-ranged screened Coulomb potential
and ρe(x, y), respectively. We model the background charge
density ρb as changing linearly from 4ρ0 ≡ 4/2π�2 to 3ρ0

over a distance w̃ in the ŷ direction (Fig. 2). Note that the
background charge density preserves translation invariance
in the x direction. As in real samples, the Zeeman coupling
ẼZ > 0 (but ẼZ � Ẽc, 1), with the spin symmetry of the
Hamiltonian being U (1).

For the unscreened Coulomb interaction, at ẼZ = 0 in
HF, for 2.52 < Ẽc < 2.90 the bulk ν = 4 ground state
(0↑, 0↓, 1↑, 1 ↓ occupied) is unpolarized and the bulk ν = 3
ground state (0 ↑, 1 ↑, 2 ↑ occupied) is fully polarized. As Ez

increases the range of Ẽc changes.

FIG. 2. Dependence of the background charge density on ŷ. The
charge density is uniform in the x̂ direction.

We work in the Landau gauge �A = −B0yx̂ with the mag-
netic field pointing in the positive ẑ direction. The magnetic

length � =
√

h̄
eB0

. The Hamiltonian has translation invariance

along x. The one-body wave functions are

�n,k (x, y) = eikxe− (y−k�2 )2

2�2√
Lxn!2n

√
π�

Hn

(
y − k�2

�

)
. (2)

The x coordinate (along the edge) has periodic bound-
ary conditions with period Lx to discretize k, which defines
the guiding center position Y (k) = k�2. The interface is cen-
tered at y = 0 with ν = 4 as the bulk ground state for y �
−� and ν = 3 as the bulk ground state for y 	 �. We use
spin-unrestricted HF, looking for solutions that preserve the
translation invariance in x. Thus, k is a good single-particle
quantum number in HF. Since we allow for Landau level and
spin mixing, we work with a total of eight basis states for each
value of k (four Landau levels, each with ↑ and ↓ spin). The
HF states are specified by the matrix 	ns,n′s′ (k) = 〈c†

n′s′kcnsk〉,
which is obtained self-consistently by diagonalizing the ef-
fective one-body HF Hamiltonian. The chemical potential μ

is chosen to maintain overall charge neutrality. We use a
screened Coulomb potential of the form v(q) = 2πEc

q+q0
, where

q0, the screening parameter, is chosen to be q0� = 0.01. Using
this method we obtain the phase diagram in the parameters
w̃, Ẽc. The SM [16] contains the details.

Phase diagram in the HF approximation. There are two
edge phases, as shown in Fig. 3, separated by a first-order
phase transition. In phase A there are three μ crossings of
single-particle levels, each spin resolved. In phase B there
is only a single self-consistent energy level that crosses μ.
In addition, the HF state of phase B shows a spontaneous
breaking of the U (1) spin symmetry.

The main features of the phase diagram result from the
competition between (i) the interface potential, controlled by
the width w̃ of the interface region, (ii) the electrostatic re-
pulsion, and (iii) the spin stiffness. All three are controlled
by the Coulomb interaction. For large values of w̃, it is
energetically favorable for the system to approximately neu-
tralize the background potential by creating an extra pair of
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FIG. 3. Phase diagram in the parameter space Ẽc and w̃ at ẼZ =
0.03, q0� = 0.01. At this value of ẼZ the ν = 4 bulk state is a singlet
and ν = 3 fully polarized for 2.49 < Ẽc < 2.87. For values of Ẽc <

2.7 Landau level mixing is weak, and the spin stiffness increases
with Ẽc. This raises the cost of phase B over phase A, leading to the
phase boundary moving towards smaller w̃. For Ẽc > 2.7 Landau
level mixing decreases the spin stiffness, thereby favoring phase B.
The transition is first order in HF.

counterpropagating edge modes, spreading the electron den-
sity over a larger region. In this phase, the spins of the chiral
modes (assuming one associated with each single-particle μ

crossing) remain well defined. For smaller values of w̃, it
becomes energetically favorable to have a single HF level
crossing μ. The requirement that the spin polarization at each
k change by 3h̄

2 in going from ν = 4 to ν = 3 necessitates a
spin rotation (and Landau level index rotation) of all single-
particle HF levels.

Let us further examine the HF solution. For this paragraph
only, we will make the naive assumption that each single-
particle crossing of μ represents a chiral mode. The single
particle energy levels and the spin components of the levels
are plotted in Figs. 4 and 5. From the energy dispersions in
Fig. 4 we see that two of the modes are downstream and one
is upstream. The spin of these modes can also be identified:

FIG. 4. Phase A in the HF approximation: The upper panel shows
the single-particle energy dispersion and the lower panel shows the
total Sz and Sx values (in units of h̄

2 ) as a function of the guiding
center position. The parameter values are Ẽc = 2.52, w̃ = 13.0 and
ẼZ = 0.03, q0� = 0.01.

FIG. 5. Phase B in the HF approximation: The upper panel shows
the single-particle energy levels and the lower panel shows the total
Sz and Sx values (in units of h̄

2 ) as a function of the guiding center
position. The parameter values are Ẽc = 2.52, w̃ = 10.0 and ẼZ =
0.03, q0� = 0.01.

Moving rightwards from large negative y, first the 1↓ level
from the ν = 4 region smoothly crosses μ from below, im-
plying a downstream chiral mode with ↓ spin. Next the 2↑
level crosses μ from above, producing an upstream chiral
mode with ↑ spin. Finally the 0 ↓ level crosses μ from below,
producing another downstream chiral mode with ↓ spin. The
spin at the interface changes by three units (each unit is h̄

2 )
as mandated by the spin polarizations of the bulk states. The
average value of Sx remains zero confirming that the chiral
levels have well-defined spins. Phase B has only one chiral
downstream mode. Here again, the Sz at the interface does
change by three units as is required, but the average value of
Sx is nonzero here and there is spin rotation at the interface.

Fluctuations beyond HF. HF is known to overpredict order,
because it neglects quantum fluctuations. HF can be taken as
reliable for single-particle spectra but should be supplemented
by reasoning based on effective field theory (EFT) when
questions of spontaneously broken symmetry and collective
modes arise. We proceed by (i) identifying the correct EFT,
(ii) matching the HF phases to those of the EFT, and (iii)
looking at quantum fluctuations beyond mean field in the EFT,
and the implied consequences for physical observables in our
system.

The SU (2) spin symmetry of our electronic Hamilto-
nian is broken down to U (1) by the Zeeman coupling,
and the edge is a quasi-1D system. Thus, the relevant EFT
in the spin sector is the XXZ model in a Zeeman field
in 1D [17–20]. Hxxz = −J

∑
Sx(n)Sx(n + 1) + Sy(n)Sy(n +

1) + 	Sz(n)Sz(n + 1) − Ez
∑

Sz(n). Quantum Hall ferro-
magnetism constrains J,	 > 0 to have the ferromagnetic
sign. Since the low-energy modes involve collective rotations
of a whole region near the edge the value of the spin at each
“site” of the XXZ model is large [16] S 	 1.

The XXZ parameters J, 	 are functions of w̃, Ẽc. To
match the phases in HF with those of Hxxz, we take the clas-
sical limit of Hxxz. For 	 < 1 and Ez < 4J (1 − 	), the XXZ
model spontaneously breaks the U (1) symmetry classically,
while for 	 > 1, it does not. We conclude that 	 < 1 in phase
B of HF, while 	 > 1 in phase A.
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Coming to quantum fluctuations, the Mermin-Wagner
theorem [21] ensures that a continuous symmetry cannot be
spontaneously broken in 1D, even at zero temperature. Hence
the spontaneous breaking of the U (1) spin-rotation symmetry
seen in HF (and the classical limit of Hxxz) will not survive
quantum fluctuations. However, as shown by a combination
of exact solution [19] and bosonization [20], Hxxz still has
two distinct phases for 	 > 0. The distinction between the
phases lies in the presence of gapless long-wavelength spin
excitations for 	 < 	c, while they are absent for 	 > 	c.
The details are in the SM [16].

The physical consequences for our system are striking.
Phase B will have, in addition to the charged chiral edge mode
predicted in HF, a pair of gapless, chiral, counterpropagating
spin modes bound to the interface. Phase A has three charged
spin-resolved chiral modes (two downstream and one up-
stream) with no gapless long wavelength spin-flip excitations.

The classical analysis of Hxxz shows that the system can
undergo the B → A transition even for 	 < 1 upon increasing
Ez. It should thus be possible to drive the B → A transition in
a given sample by applying an in-plane field.

Coming to experiment, any probe that couples to low-
energy long-wavelength spin fluctuations can be used to tell
phases A and B apart. One such probe is NMR. The nu-
clear spin moments couple to the external field via their own
Zeeman term and to the electronic spins via the hyperfine
interaction. The total electronic spin polarization is measured
by the Knight shift [22] of the frequencies of NMR resonance
lines and has been used to measure the total spin polarization
of QH ferromagnets [23–25]. The macroscopic nuclear spin
moment relaxes via the inhomogeneous distribution of local
effective magnetic fields (with relaxation time T1) and via
true energy relaxation by emitting and absorbing low-energy
electronic spin degrees of freedom (the relaxation time T2).
Clearly, T2 is the relevant quantity to detect the presence of

absence of gapless electronic spin excitations. A transition
from A to B will lead to a dramatic increase of the energy
relaxation rate of nuclear spins and thus a decrease of T2. Our
system requires a local measurement of T2, which may be on
the verge of feasibility [26,27].

We leave several important questions for future analysis.
(i) Are there phases besides A and B in a physically real-
istic model? It seems theoretically possible that in phase B,
quantum fluctuations could gap out the spin excitations while
leaving the chiral charged edge mode as the sole survivor.
This phase, B∗, would be distinct from A because upstream
modes (measurable in two-terminal interface charge/thermal
conductance) are present in A but absent in B∗. (ii) What is the
order of the A → B transition? The XXZ suggests a second
order transition while HF implies first order. (iii) Can the
gapless chiral spin modes in phase B carry charge? It seems
possible that they can, based on the spin-charge relation in QH
ferromagnets [3,4].
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