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Multiple insulating states due to the interplay of strong correlations and lattice
geometry in a single-orbital Hubbard model
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We report 10 ground states arising from strong correlations in the single-orbital Hubbard model on the
decorated honeycomb lattice, including Dirac metals, flat-band ferromagnets, real-space Mott insulators, dimer
and trimer Mott insulators, and a spin-1 Mott insulator. The rich phase diagram arises from structures within the
unit cell. Hence, such states are absent on simpler lattices. We argue that such insulating phases are prevalent
on decorated lattices. These are found in many materials and common in coordination polymers, providing a
playground to explore this physics.
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Decorated lattices are found in a wide range of materials,
including inorganic compounds [1–6], organometallics [7],
organic molecular crystals [8], and coordination polymers
(CPs) [9–18]. They consist of one or more cluster types, e.g.,
a molecule, linked to form a net [18,19]. Many materials with
decorated lattices are reported to have novel ground states
[20–33]. Perhaps the simplest is the decorated honeycomb
lattice (DHL), realized in materials such as the trinuclear
organometallic compounds, e.g., Mo3S7(dmit)3 [7], in or-
ganic molecular crystals [8], in iron (III) acetates [1], in cold
fermionic atoms [34], and in CPs [15–17]. There are a number
of theoretical studies that predict exotic phases of matter on
this lattice, such as the quantum spin Hall insulator [24],
the quantum anomalous Hall insulator [25–27], topological
metals [27], valence bond solids (VBS) [35–38], and quantum
spin liquids [39–43] with non-Abelian anyons [39–41].

Rich phase diagrams often arise from the complex in-
terplay of interactions between multiple orbitals, as found
in the discovery and analysis of the superconducting pnic-
tide compounds [44]. Here, we report a rich phase diagram
with only a single orbital and an on-site Hubbard repulsion,
but multiple sites in the unit cell. This suggests an alterna-
tive minimal path to rich physics arising from the unique
structure of decorated lattices that is not found in simpler
lattices.

In this Letter, we study the single-orbital Hubbard model
on the DHL [Fig. 1(a)]. Despite the model having only three
parameters (tg/tk , U/tk , n), we find a plethora of interaction-
driven phases (Table I). Some of the insulators occur away
from half-filling where a metal is expected. These arise
because of effective multiorbital interactions due to the struc-
tures that decorate the lattice. We construct simple pictures
of these insulating phases by studying appropriate “molec-
ular” limits—analogous to the atomic limit for the usual
Mott-Hubbard transition. Low-energy effective theories of
these insulators include the spin-1/2 Heisenberg model on
the kagome lattice, and the spin-1/2 and spin-1 Heisenberg
models on the honeycomb lattice (Figs. 1 and 2). We argue

that such “molecular” Mott insulators are prevalent in dec-
orated lattices. With the chemical flexibility found in CPs,
decorated lattices provide an avenue to explore rich physics
in condensed-matter systems.

The Hamiltonian for the Hubbard model on the DHL [7] is

Ĥ ≡ − tg
∑

〈iα, jα〉,σ
ĉ†

iασ ĉ jασ − tk
∑

i,α �=β,σ

ĉ†
iασ ĉiβσ

+ U
∑

i,α

n̂iα↑n̂iα↓, (1)

where ĉ†
iασ (ĉiασ ) creates (annihilates) an electron with spin

σ ∈ {↑,↓} on site α ∈ {1, 2, 3} of triangle cluster i, n̂iασ ≡
ĉ†

iασ ĉiασ , tg (tk) is the intertriangle (intratriangle) hopping
integral [Fig. 1(a)], 〈iα, jα〉 signifies nearest-neighbor hop-
ping between sites of adjacent triangles, and U is the local
Coulomb repulsion.

We use rotationally invariant slave bosons (RISB) [45–48]
to find the ground state of Eq. 1 using two-site [Figs. 2(a)–
2(c)] or three-site clusters [Figs. 2(d)–2(f)], which are the
minimal cluster sizes to capture the intracluster correlations
necessary to describe the Mott insulators that we find away
from half-filling in the kagome-like regime (tg/tk > 3/2)
and the honeycomb-like regime (tg/tk < 3/2), respectively.
Technical details can be found in the Supplemental Material
[49]. Equivalent to the Gutzwiller approximation for multior-
bital models [57], RISB renormalizes an uncorrelated wave
function by adjusting the weights of local electronic config-
urations on a cluster, and at the mean-field level the metallic
state is a simple realization of a Landau Fermi liquid. RISB
successfully describes many strongly correlated phenomena
[47,48,58–62]. The use of RISB allows us to capture impor-
tant spatial correlations necessary for the insulators that we
find, it describes exactly the limits of isolated trimers (tg = 0)
and isolated dimers (tk = 0), and it allows us to study a wide
range of parameters at a reasonable computational cost.
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FIG. 1. (a) A triangle decorates each vertex of the honeycomb
lattice. (b) Noninteracting band structure of the DHL with strong
intratriangle hopping. The dashed (solid) line has mostly A (E ) trimer
orbital character [cf. Fig. 2(e)]. (c) Strong intertriangle hopping. The
dashed (solid) line has mostly (anti)bonding orbital character [cf.
Fig. 2(b)].

Insulators in RISB. Only the coherent part of the many-
body Green’s function matrix G(k, ω) is captured within
RISB. An effect of the correlations in the metallic state is a
narrowing of the quasiparticle bands ξp(k) (a band is indexed
by p), and a loss of spectral weight, captured by the quasi-
particle weight Zqp

p (k) [49]. For quasiparticle bands that cross
the Fermi energy (ω = 0), RISB describes a Fermi liquid
where Zqp

p (k) is a measure of the metallicity, with Zqp
p (k) = 1

corresponding to a noninteracting metal and Zqp
p (k) = 0 to a

correlated insulator, where the Fermi surface vanishes. This
is the usual description of a Mott insulator at half-filling
captured in slave boson theories [45], and originally described
by Brinkman and Rice [63].

We work in the basis of the molecular orbitals (Fig. 2)
where the quasiparticle weight is a diagonal matrix Z,
and we assume that the clusters are uniform. For two-site
clusters Zi = diag(Zb, Za) and for three-site clusters Zi =
diag(ZA, ZE1 , ZE2 ) with ZE ≡ ZE1 = ZE2 . In the honeycomb-
like regime [Fig. 1(b)], the lower (upper) bands have mostly
A (E ) orbital character, and in the kagome-like regime
[Fig. 1(c)], the lower (upper) bands have mostly (anti)bonding
orbital character. To a good approximation, the quasiparticle
weight in the molecular orbital basis approximates the quasi-
particle weight in the bands—they are exactly equivalent at
the � and K points [49].

Real-space Mott insulator. The usual place to look for a
Mott insulator is at half-filling (n = 1) because U disfavors
double occupancy and suppresses charge fluctuations so that
electrons become localized to a lattice site. For tg/tk � 3/2
and at finite U a metal-insulator transition occurs where the
quasiparticle weight for all bands vanishes [Fig. 3(a)]. For
tg/tk > (tg/tk )c = 0.9–1.0, the dominating electronic config-
urations are spin-singlets along the tg bonds [Fig. 4(b)], while
for tg/tk < (tg/tk )c spin-singlets form along the tk bonds. In
the latter phase, there is an instability to a magnetic state that
breaks the C3 rotational symmetry of the lattice [49].

The Heisenberg model on the DHL with exchange cou-
pling Jg = 4t2

g /U and Jk = 4t2
k /U provides an effective model

of the Hubbard model at large-U and n = 1. This model has
been extensively studied [35–38]. Based on a detailed numeri-
cal study, it has been argued that for Jg/Jk � 0.9 (tg/tk � 0.95)
a Jg-dimer VBS forms, while for Jg/Jk � 0.9 there is a VBS
that favors spin-singlet formation along Jk bonds but breaks
the C3 rotational symmetry of a triangle [38]. That our RISB
calculations, which deal with the full fermionic degrees of

TABLE I. Summary of the insulating states of the single-
orbital Hubbard model on the decorated honeycomb lattice (DHL),
where tg (tk) are the intertriangle (intratriangle) hopping amplitudes
[Fig. 1(a)], and n is the filling per site. The ground-state candidates
of the effective spin-S Heisenberg model in the Mott-insulating
phases are in parentheses. QSL denotes quantum spin liquid and VBS
denotes valence bond solid.

n tg � tk S

1/3 Trimer Mott 1/2
(honeycomb Néel order)

2/3 Band insulator
5/6 Flatband ferromagnet
1 Real-space Mott 1/2

(broken C3 VBS)
4/3 Spin-1 Mott 1

(honeycomb Néel order)
11/6 Flatband ferromagnet

n tg � tk S
1/2 Dimer Mott 1/2

(kagome QSL?)
5/6 Flatband ferromagnet
1 tg-dimer VBS (large U ) crossover 1/2

to band insulator (small U )
3/2 Dimer Mott 1/2

(kagome QSL?)
11/6 Flatband ferromagnet

freedom, qualitatively agree with calculations for the spin
model (and give a good estimate for the critical coupling)
suggests that RISB is a good approximation for the problem
at hand.

Away from half-filling the naive expectation is a correlated
metal because on average there is not one electron per site.
However, the structure of the unit cell of decorated lattices
provides important additional degrees of freedom that are not
present in simpler lattices. Below we will show that these
structures lead to several different interaction-driven insula-
tors (Figs. 3 and 4), as is the case for multiorbital atomic
systems.

FIG. 2. Clusters used. (a) Clustering the DHL as dimers maps
to a (b) two-orbital model on the (c) kagome lattice. (d) Clustering
the lattice as trimers maps to an (e) three-orbital model on the (f)
honeycomb lattice. In both cases there is complicated inter- and
intraorbital hopping between clusters with phases that depend on
direction.
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FIG. 3. Phase diagram in the honeycomb-like regime for the
triangle clusters [Figs. 2(d)–2(f)]. (a) The relevant matrix ele-
ment of Z that approximates the quasiparticle weight for bands at
the Fermi energy. The quasiparticle weight vanishes in the Mott-
insulating phases. For n � 1 (n > 1) we show the quasiparticle
weight ZA (ZE ) associated with the A (E ) trimer orbital. At n =
1, ZA ∼ ZE . (b) Effective spin S of a triangle, where S is the
solution to S(S + 1) = ∑

i〈
Si · 
Si〉/2N , the spin of triangle i is

Si = ∑3

α=1
1
2

∑
σσ ′ ĉ†

iασ 
τσσ ′ ĉiασ ′ , 
τ is a vector of Pauli matrices, and
N is the number of unit cells. A spin-1/2 degree of freedom arises on
each triangle in the real-space and trimer Mott insulators. A spin-1
moment occurs in the spin-1 Mott insulator because an effective
intratriangle Hund’s coupling J̃ favors the formation of spin-triplets
on a triangle [64].

Dimer Mott insulators. When intertriangle hopping is
strong (tg/tk > 3/2), significant insight can be gained from
working in the orbital basis of a dimer formed along the tg
bonds [Figs. 2(a)–2(c)]. The Hamiltonian describing a dimer
has bonding and antibonding orbitals separated in energy
by 2tg, with intraorbital and interorbital Coulomb repulsion
(Ũ = U/2), and interorbital spin-flip terms [49]. This leads to
a model analogous to the Hubbard bilayer model [46] on the
kagome lattice with complicated intersite hopping that mixes
the bonding and antibonding orbitals.

In the dimer molecular limit (tg,U → ∞ with U/tg finite),
RISB with the cluster shown in Fig. 2(b) becomes exact.
The mixing between the bonding and antibonding orbitals
vanishes and the electronic structure contains two decoupled
copies of the kagome lattice [Fig. 1(c)] with an intraorbital
repulsion Ũ . Half-filling the (anti)bonding orbital and turning
on interactions is formally equivalent to the half-filled single-
orbital Hubbard model on the kagome lattice [49]. A Mott
insulator occurs for sufficiently large Ũ [65] and in the limit
Ũ → ∞ is connected to the ground state of isolated dimers.

Our RISB results show that the dimer Mott insulators are
extended phases away from these limits. In Fig. 4(a) we show
the quasiparticle weight Zb (Za) of the (anti)bonding orbitals
for n � 1 (>1), which correspond to the lower (upper) bands
in the kagome-like regime [Fig. 1(c)]. An insulator occurs at
(three-)quarter-filling for sufficiently large U with the bond-
ing orbitals half-filled (fully occupied) and the antibonding
orbitals empty (half-filled). Interactions renormalize the elec-
trons so that the dimer orbitals decouple, and the insulator is
adiabatically connected to the insulator in the dimer molecu-

FIG. 4. Phase diagram in the kagome-like regime for the dimer
clusters [Figs. 2(a)–2(c)]. (a) The relevant matrix element of Z that
approximates the quasiparticle weight for bands at the Fermi energy.
The quasiparticle weight vanishes in the Mott-insulating phases. For
n � 1 (n > 1) we show the quasiparticle weight Zb (Za) associated
with the (anti)bonding dimer orbital. At n = 1, Zb ∼ Za. (b) Effec-
tive spin S of a dimer, where S(S + 1) = ∑

i〈
Si · 
Si〉/3N , and the
spin of dimer i is 
Si = ∑2

α=1
1
2

∑
σσ ′ ĉ†

iασ 
τσσ ′ ĉiασ ′ . A spin-1/2 degree
of freedom arises on each dimer in the dimer Mott insulators. At
half-filling, spin-singlet formation along the tg bond leads to S = 0.

lar limit: a Mott insulator on the kagome lattice. As tg/tk is
reduced, the dimer Mott insulator becomes unstable and there
is instead a metal, occurring for tg/tk � 4.1 (3.0) for n = 1/2
(3/2).

The low-energy physics of the dimer Mott insulators is
crucially different from the Mott insulator at half-filling. At
half-filling the low-energy effective theory is the spin-1/2
Heisenberg model on the DHL. In the dimer Mott insulators,
charge fluctuations are suppressed between dimers, with each
dimer forming a spin S = 1/2 moment [Fig. 4(b)]. Hence,
the low-energy effective theory of the dimer Mott insulators is
the spin-1/2 Heisenberg model on the kagome lattice, whose
ground state may be a quantum spin liquid [66].

These dimer Mott insulators on the DHL are similar to
those observed in the organic charge transfer salts κ-(BEDT-
TTF)2X , where the BEDT-TTF molecules form a dimer and
share one hole [67–69]. For many X the intradimer hopping is
more than twice the interdimer hopping [70], and a minimal
model to describe the insulator is the half-filled single-orbital
Hubbard model on the anisotropic triangular lattice [68,69].
Our results demonstrate that such insulators also arise in dec-
orated lattices.

Trimer Mott insulator. The simplest way to understand the
insulating phases in the limit of strong intratriangle hopping
(tg/tk < 3/2) is to work in the eigenbasis of a triangle formed
by the tk bonds [Figs. 2(d)–2(f)]. The Hamiltonian describing
a trimer has an A orbital separated in energy from two de-
generate E orbitals by 3tk , with intraorbital and interorbital
Coulomb repulsion Ũ = U/3, a Hund’s coupling J̃ = −Ũ/3
that favors spin-triplet formation on a triangle [21,22,64,71],
interorbital spin-flip, and correlated interorbital hopping terms
[49]. The Hamiltonian becomes a three-orbital model on the
honeycomb lattice with complicated intersite hopping.
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In the trimer molecular limit (tk,U → ∞, U/tk finite),
RISB with the cluster shown in Fig. 2(d) is exact. At one-
sixth-filling (n = 1/3), the ground state has one electron in the
A orbital with empty E orbitals. In this limit, the Hamiltonian
is formally equivalent to the single-orbital Hubbard model
on the honeycomb lattice [49]. A Mott insulator occurs for
large Ũ , and at Ũ → ∞ it is connected to the ground state of
isolated trimers.

RISB demonstrates that the trimer Mott insulator is stable
away from the trimer molecular limit, Fig. 3(a). However,
for sufficiently small Ũ , charge fluctuations between the
A and E orbitals destroy the insulating state, and a Dirac
metal is recovered. The trimer Mott insulator is adiabatically
connected to the Mott insulator of the half-filled single-
orbital Hubbard model on the honeycomb lattice. Hence,
the low-energy effective theory is the spin-1/2 Heisenberg
model on the honeycomb lattice whose ground state is Néel-
ordered [72–79]. Above a critical hopping ratio tg/tk � 0.45
the trimer Mott insulator is not found because a finite U is
not sufficient to decouple the A and E orbitals and localize
electrons.

Spin-1 Mott insulator. At two-thirds filling (n = 2/3), the
trimer E orbitals are degenerate and the effective intraorbital
interactions become crucial for understanding the insulating
state. In the trimer molecular limit, RISB is exact and, for
U > 0, the ground state contains a spin-triplet on each trimer
due to the effective Hund’s interaction J̃ . For tk � tg and
n > 1/3, the Hamiltonian maps to a two-orbital Hubbard-
Kanamori model on the honeycomb lattice with intersite
hopping integrals whose phases are direction-dependent [49].

In Fig. 3(a) we show the quasiparticle weight ZE of the E
orbitals for n > 1, which corresponds to the upper bands in the
honeycomb-like regime [Fig. 1(b)]. We find that ZE vanishes,
resulting in a metal-insulator transition from a Dirac metal
to a spin-1 Mott insulator with the E (A) orbitals half-filled
(fully occupied). In the insulator, the degenerate E orbitals
are decoupled from the A orbitals with each triangle forming
a spin-triplet because of the effective Hund’s interaction J̃
[Fig. 3(b)]. Within RISB the spin-1 Mott insulator is adia-
batically connected to the isolated trimer limit and a Mott
insulator on the effective two-orbital model at half-filling on
the honeycomb-like lattice. Above the critical hopping pa-
rameter ratio tg/tk � 0.86 no spin-1 Mott insulator exists for
finite U .

The low-energy effective theory of the spin-1 Mott insula-
tor is the spin-1 Heisenberg model [43,80] on the honeycomb
lattice whose ground state is Néel-ordered [81–84]. The
molecular crystal Mo3S7(dmit)3 is two-thirds filled, and an
isolated monolayer is the DHL [7]. Hence, we propose
that isolated monolayers of Mo3S7(dmit)3 are spin-1 Néel-
ordered.

Crucially, the spin-1 Mott insulator requires the effective
Hund’s coupling J̃ on a triangle. This can straightforwardly be
confirmed by varying the effective multiorbital interactions.

The dimer and trimer Mott insulators occur even when there
is only an effective intraorbital Coulomb repulsion Ũ with
no multiorbital interactions. In contrast, there is no Mott-
insulating phase at two-thirds filling with only intraorbital Ũ .
A metal-insulator transition only occurs when the multiorbital
interactions on a trimer are included.

Ferromagnetism. Mielke and Tasaki proved that the ground
state of the Hubbard model with a flatband is a ferromagnetic
insulator for U > 0 provided criteria are satisfied [85–87],
which our model meets for any tg/tk and when the upper
flatband is half-filled (n = 11/6). The criteria for the rigorous
proof are not met by the lower flatband. Nevertheless, RISB
predicts ferromagnetic long-range order when the lower flat-
band is partially filled (2/3 < n < 1) [49].

Additionally, the DHL has van Hove singularities at fillings
n = 1/4, 5/12, 5/4, and 17/2, where ρ(E ) → ∞. Due to the
Stoner mechanism [88], the ground state is a ferromagnetic
metal near n = 1/4 and 5/12. However, antiferromagnetic
correlations dominate near n = 5/4 and 17/2 because of the
proximity to the spin-1 Mott insulator [49].

Conclusions. Based on the above results, we propose that
molecular Mott insulators are general on decorated lattices.
The bases that diagonalize local structures within the unit
cell of decorated lattices provide an intuitive picture of the
insulating phases that are stabilized by strong electronic corre-
lations. If the local structure is sufficiently complicated, then
correlations can drive more exotic ground states, as demon-
strated by the spin-1 Mott insulator at two-thirds filling on
the DHL.

Many materials realize the DHL lattice [1,7,8,15–17,34].
Electronic structure calculations place some in the kagome-
like [8,16] and others in the honeycomb-like [7,17] regimes.
Several of these materials have insulating phases that have
not previously had a detailed theoretical explanation. Chem-
ical doping could allow for the exploration of their phase
diagrams. More broadly, decorated lattices are common in
CPs and found in many other classes of materials. These
are typically insulating—but detailed theoretical explana-
tions of these insulating states are largely absent. Our work
provides the theoretical framework for understanding these
materials.

An important open question is as follows: Do uncon-
ventional superconducting states generically arise near these
molecular Mott-insulating phases? The superconductivity in
the dimer Mott insulators in κ-(BEDT-TTF)2X [69,89,90]
and some multiorbital models [23,91,92] and materials [44]
suggest that they may.

Note added in proof. Near half-filling there is singlet
superconductivity with extended-s, extended-d, and f-wave
symmetry [93].
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[62] A. Isidori, M. Berović, L. Fanfarillo, L. de’ Medici, M.
Fabrizio, and M. Capone, Phys. Rev. Lett. 122, 186401
(2019).

[63] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302
(1970).

[64] J. Merino, B. J. Powell, and R. H. McKenzie, Phys. Rev. B 73,
235107 (2006).

[65] T. Ohashi, N. Kawakami, and H. Tsunetsugu, Phys. Rev. Lett.
97, 066401 (2006).

[66] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.
Norman, and T. Senthil, Science 367, eaay0668 (2020).

[67] K. Kanoda, Phys. C 282-287, 299 (1997).
[68] R. H. McKenzie, arXiv:cond-mat/9802198.
[69] B. J. Powell and R. H. McKenzie, J. Phys.: Condens. Matter 18,

R827 (2006).
[70] A. C. Jacko, E. P. Kenny, and B. J. Powell, Phys. Rev. B 101,

125110 (2020).
[71] C. Janani, J. Merino, I. P. McCulloch, and B. J. Powell, Phys.

Rev. B 90, 035120 (2014).
[72] A. Mattsson, P. Fröjdh, and T. Einarsson, Phys. Rev. B 49, 3997

(1994).
[73] A. Banerjee, K. Damle, and A. Paramekanti, Phys. Rev. B 83,

134419 (2011).
[74] S. Pujari, K. Damle, and F. Alet, Phys. Rev. Lett. 111, 087203

(2013).
[75] M. S. Block, R. G. Melko, and R. K. Kaul, Phys. Rev. Lett. 111,

137202 (2013).

[76] K. Harada, T. Suzuki, T. Okubo, H. Matsuo, J. Lou, H.
Watanabe, S. Todo, and N. Kawashima, Phys. Rev. B 88,
220408(R) (2013).

[77] S.-S. Gong, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,
Phys. Rev. B 88, 165138 (2013).

[78] X.-L. Yu, D.-Y. Liu, P. Li, and L.-J. Zou, Phys. E 59, 41 (2014).
[79] R. F. Bishop, P. H. Y. Li, O. Götze, J. Richter, and C. E.

Campbell, Phys. Rev. B 92, 224434 (2015).
[80] J. Merino, A. C. Jacko, A. L. Khosla, and B. J. Powell, Phys.

Rev. B 94, 205109 (2016).
[81] J. Merino, A. C. Jacko, A. L. Khosla, A. Ralko, and B. J. Powell,

AIP Adv. 8, 101430 (2018).
[82] J. Merino and A. Ralko, Phys. Rev. B 97, 205112 (2018).
[83] S.-S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev. B 92, 195110

(2015).
[84] P. H. Y. Li, R. F. Bishop, and C. E. Campbell, J. Phys.: Conf.

Ser. 702, 012001 (2016).
[85] A. Mielke, J. Phys. A 24, 3311 (1991).
[86] A. Mielke, J. Phys. A 25, 4335 (1992).
[87] H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).
[88] E. C. Stoner, J. Phys. Radium 12, 372 (1951).
[89] B. J. Powell and R. H. McKenzie, Phys. Rev. Lett. 94, 047004

(2005).
[90] B. J. Powell and R. H. McKenzie, Phys. Rev. Lett. 98, 027005

(2007).
[91] S. Hoshino and P. Werner, Phys. Rev. Lett. 115, 247001 (2015).
[92] S. Hoshino and P. Werner, Phys. Rev. B 93, 155161 (2016).
[93] J. Merino, M. F. Lopez, and B. J. Powell, arXiv:2012.13211

[cond-mat.supr-con].

L081114-6

https://doi.org/10.1103/PhysRevLett.110.096401
https://doi.org/10.1103/PhysRevLett.122.186401
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.73.235107
https://doi.org/10.1103/PhysRevLett.97.066401
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1016/S0921-4534(97)00266-9
http://arxiv.org/abs/arXiv:cond-mat/9802198
https://doi.org/10.1088/0953-8984/18/45/R03
https://doi.org/10.1103/PhysRevB.101.125110
https://doi.org/10.1103/PhysRevB.90.035120
https://doi.org/10.1103/PhysRevB.49.3997
https://doi.org/10.1103/PhysRevB.83.134419
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevLett.111.137202
https://doi.org/10.1103/PhysRevB.88.220408
https://doi.org/10.1103/PhysRevB.88.165138
https://doi.org/10.1016/j.physe.2013.12.017
https://doi.org/10.1103/PhysRevB.92.224434
https://doi.org/10.1103/PhysRevB.94.205109
https://doi.org/10.1063/1.5041341
https://doi.org/10.1103/PhysRevB.97.205112
https://doi.org/10.1103/PhysRevB.92.195110
https://doi.org/10.1088/1742-6596/702/1/012001
https://doi.org/10.1088/0305-4470/24/14/018
https://doi.org/10.1088/0305-4470/25/16/011
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1051/jphysrad:01951001203037200
https://doi.org/10.1103/PhysRevLett.94.047004
https://doi.org/10.1103/PhysRevLett.98.027005
https://doi.org/10.1103/PhysRevLett.115.247001
https://doi.org/10.1103/PhysRevB.93.155161
http://arxiv.org/abs/arXiv:2012.13211

