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Ab initio study of ultrafast charge dynamics in graphene
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Monolayer graphene provides an ideal material to explore one of the fundamental light-field driven interfer-
ence effects: Landau-Zener-Stückelberg interference. However, direct observation of the resulting interference
patterns in momentum space has not proven possible, with Landau-Zener-Stückelberg interference observed
only indirectly through optically induced residual currents. Here we show that the transient electron momentum
density (EMD), an object that can easily be obtained in experiment, provides an excellent description of momen-
tum resolved charge excitation. We employ state-of-the-art time-dependent density function theory calculations,
demonstrating by direct comparison of EMD with conduction band occupancy, obtained from projecting the
time propagated wave function onto the ground state, that the two quantities are in excellent agreement. For even
the most intense laser pulses we find the electron dynamics to be almost completely dominated by the π band,
with transitions to other bands strongly suppressed. Simple model based tight-binding approaches can thus be
expected to provide an excellent description for the laser induced electron dynamics in graphene.

DOI: 10.1103/PhysRevB.103.L081102

Intense laser light offers the possibility to control elec-
trons in matter on femtosecond timescales. Triumphs of this
burgeoning field include tuning the optically induced current
in graphene via the carrier envelope phase of light [1–3],
attosecond control over magnetic order in thin films of mag-
netic overlayers [4,5], and controlled valley excitation in the
semiconducting few layer dichalcogenides by circularly po-
larized light [6,7] to name only a few examples. The two
band Dirac cone found in graphene provides an ideal ma-
terials platform for studying one of the canonical light-field
driven interference effects: Landau-Zener-Stückelberg (LZS)
interference [8,9], which before its observation in graphene
[3] had only been observed in designed two state quan-
tum systems [10–14]. This effect occurs when an oscillating
electromagnetic field drives intraband oscillation through the
Bloch acceleration theorem k → k + A(t )/c and in the re-
gion of an avoided crossing interband transitions occur even
when the band gap exceeds the dominant pulse frequency,
so-called Landau-Zener transitions. Upon repeated passing
of the avoided crossing multiple pathways exist to the con-
duction band with consequent constructive and destructive
interference of electron states. This offers rich possibili-
ties for controlling electron dynamics by intense laser light,
demonstrated by the recent observation of control over optical
currents underpinned by LZS interference [3], a result antici-
pated theoretically in Ref. [15].

The ubiquity of the avoided crossing band structure in
two-dimensional (2D) materials, found not only in the Dirac
cone of graphene but also in the semiconducting monolayer
dichalcogenides [16], phosphorene [17,18], silicene [19], and
stanene [20], points towards the importance of LZS inter-
ferometry in controlling electron dynamics in 2D materials.
However, while interference physics can be easily probed

theoretically through the conduction band population
[18,21,22], the experimental situation is more difficult,
with to date only indirect observations of LZS physics in
materials reported. In this Letter we show that the transient
electron momentum density (EMD) difference, defined as

�ρ(p, t f ) = ρ(p, t f ) − ρ(p, t = 0) (1)

with p momentum and ρ(p, t ) the electron momentum density
[23] before (t = 0) and after (t f ) the pump laser pulse, offers
a tool for directly probing LZS interference effects. The EMD
may be measured experimentally via tomographic reconstruc-
tion using Compton profiles [24–28] and, in particular, for
layered materials [29,30]. Combining these techniques with
ultrafast x-ray sources will allow the transient EMD to be ex-
perimentally measured. This suggests a way in which the LZS
physics may be directly observed in 2D materials, opening the
way to correlate indirect LZS physics such as induced currents
with the fundamental momentum space interference patterns.

For graphene, we demonstrate that the EMD facilitates
both the real time observation of the formation of LZS inter-
ference patterns, as well as the elucidation of subtle features
in the relation between pump pulse and interference in mo-
mentum space.

In contrast to previous works that have employed sim-
ple single particle tight-binding Hamiltonians to study the
LZS effect [3,18,21,22,31–34], we will here deploy the time-
dependent version of density functional theory (TD-DFT). To
establish the accuracy of the EMD as a record of LZS inter-
ference we compare it with the excited electron distribution,
Nex, defined within TD-DFT as [35]

Nex(k, t ) =
occ∑

i

unocc∑
j

|〈ψik(t )|ψ jk(t = 0)〉|2, (2)
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where ψ jk(t ) is the time-dependent Kohn-Sham orbital at time
t , and ψik(t = 0) is the ground-state orbital. In all cases we
find that the pattern of excitation in momentum space gener-
ated by transient EMD and Nex is nearly identical in the first
Brillouin zone (BZ).

Finally, we consider the role of the non-π -band states in the
electron dynamics in graphene. Remarkably, despite electron
excitation through the whole energy range of the π band (up to
10 eV above the Fermi energy, an energy range encompassing
the σ ∗ bands as well as several high l character bands), it turns
out that there occur almost no transitions to states outside the
π -band manifold. We attribute this to the near vanishing of the
corresponding dipole matrix elements. Our calculations thus
suggest that even for very significant laser excitation tight-
binding based models will provide a good description of the
electron dynamics.

According to the Runge-Gross theorem [36], which ex-
tends the Hohenberg-Kohn theorem into the time domain,
with common initial states there will be a one to one cor-
respondence between the time-dependent external potentials
and densities [37,38]. Based on this theorem, a system of non-
interacting particles can be chosen such that the density of this
noninteracting system is equal to that of the interacting system
for all times, with the wave function of this noninteracting
system represented by a Slater determinant of single-particle
orbitals. These time-dependent Kohn-Sham (KS) orbitals are
governed by the Schrödinger equation (for the spin degenerate
case):

i∂tψ j (r, t ) =
{

1

2

[
−i∇ + 1

c
Aext (t )

]2

+ vs(r, t )

}
ψ j (r, t ).

(3)

In the above equation Aext (t ) is the vector potential repre-
senting the applied laser field, the effective potential vs(r, t )
is given by vs(r, t ) = vext (r, t ) + vH(r, t ) + vxc(r, t ), where
vext (r, t ) is the external potential, vH(r, t ) the Hartree poten-
tial, and vxc(r, t ) is the exchange-correlation (xc) potential.
For the latter we have used the adiabatic local density approx-
imation. From the Fourier transform of the Kohn-Sham states,
ψik(r), the electron momentum density can be constructed as
ρ(p) = ∑

ik |ψik(p)|2. This EMD constructed from KS states
has been found to provide excellent agreement with that ob-
tained from Compton scattering [23].

All calculations employ the state-of-the art all-electron full
potential linearized augmented plane wave (LAPW) method
[39], as implemented in the ELK code [40]. We have used a
30×30 k-point set; for further details of the implementation
of TD-DFT within the LAPW basis we refer the reader to
Refs. [41,42].

LZS interference probed by 2D tr-EMD. The patterns of
excited charge in momentum space that most directly char-
acterize Landau-Zener-Stückelberg interference are generally
presented by plotting the conduction band occupation over the
first Brillouin zone. However, this information, while easy to
obtain theoretically, is difficult to obtain experimentally. We
thus look at an alternative quantity; the change in electron
momentum density due to the laser pulse.

In Fig. 1 are displayed the Nex, EMD, and induced cur-
rents for a diverse set of laser pulses exhibiting variation of

FIG. 1. Conduction band occupation as a function of k vector as
determined directly by projection of the time-dependent state onto
the ground-state Kohn-Sham states (first column) [see Eq. (2)] and,
second column, the transient electron momentum density (tr-EMD)
difference [see Eq. (1)]. Evidently, both quantities in a consistent
way capture the momentum space intensity fringes generated by
Landau-Zener-Stückelberg interference. The third column displays
the electric field (E field) of the pump laser pulse (blue lines), the A
field scaled such that it can be plotted on the same axis (green lines),
and the induced current density (red lines). Pulses in (a)–(l) have a
full width half maximum (FWHM) of 1.935 fs, a central frequency of
1.4 eV, and peak intensity of 5.43×1012 W/cm2, and carrier envelope
phase as indicated in the panels. The remaining three rows (m)–(u)
have FWHM 2.758 fs, CEP of π/2, and central frequencies and
intensities as indicated in the panels. In the first and second columns,
the white hexagons represent the boundary of the first BZ while
the lines in the right bottom corner represent the effective k-space
trajectory given by the Bloch acceleration theorem.

several pulse parameters: carrier envelope phase (the angular
difference between the E field and pulse envelope maxima),
polarization, intensity, frequency, and full width half maxi-
mum (FWHM). The magnitude of the electric field is of the
order of 5 V/nm, placing these pulses in the strong nonper-
turbative regime for graphene. As can be seen, in all cases
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Nex and EMD convey consistent information concerning the
excited charge, establishing the latter as a reliable probe of
momentum space excitation.

Before exploring the LZS interference physics of graphene
revealed in Fig. 1, we first provide a theoretical basis to
this observed coincidence in the pattern of momentum space
excitation between Nex and EMD. The Kohn-Sham electron
momentum density is defined as

ρ(p, t ) =
∑

jk

f jk|ψ jk(p, t )|2, (4)

where

ψ jk(p, t ) =
∫

dp eip·rψ jk(r, t ) (5)

is the Fourier transform of the KS wave function ψ jk and
f jk the occupation. Upon expansion of the Bloch functions
in plane waves of the reciprocal lattice vectors, G,

ψ jk(r, t ) =
∑

G

ck
jG(t )ei(k+G)·r (6)

and insertion into Eqs. (4) and (5), we find that the EMD can
be expressed as

ρ(p, t ) =
∑

jk

f jk

∑
G

∣∣ck
jG(t )

∣∣2
δ(p − k − G). (7)

The EMD will therefore only change with respect to the
ground-state EMD [see Eq. (1)] at points p = k + G where
the coefficients ck

jG(t ) change. In particular, in almost all sys-
tems, this will include the G = 0 point, i.e., the k point itself
within the first Brillouin zone. As the coefficient ck

jG=0(t f )
will change (w.r.t. the GS value) at points in k space where
Nex(k, t f ) is nonzero, �ρ(k, t f ) must also then be nonzero.
Hence, any interference pattern seen in Nex(k, t f ) will also
be seen in �ρ(k, t f ). For two electron systems, it is known
that the EMD produced from the KS wave function can differ
significantly from the exact EMD [43,44]; however, in peri-
odic systems, it was shown that the KS-EMD gives excellent
agreement with Compton scattering profiles [23].

For a carrier envelope phase (CEP) of φ = ±π/2 the max-
imum E-field intensity, and hence the interband transition at
the avoided crossing, occurs at the turning point of the path
in momentum space executed due to the A field. As a result,
the LZ transitions generate excited conduction band charge
at either the positive (φ = +π/2) or negative (φ = −π/2) kx

sides of the Dirac point. This can be seen in rows (a)–(c) and
(h)–(j) of Fig. 1. Note that positive and negative kx, measured
from the Dirac point, corresponds to the left- and right-hand
sides of the vertical BZ boundary as seen in Fig. 1. In contrast,
for φ = 0 the maximum E-field intensity occurs at A = 0
resulting in a symmetric excitation about the Dirac point [see
rows (c)–(e)]. In the past such asymmetric LZS interference
has been indirectly accessed by means of the net current that
results from the asymmetric momentum space occupation for
nonzero CEP, and to date this represents the only observation
in experiment of LZS in a material [3]. This coherent current
(current per unit cell) induced by the laser pulse is displayed
in the third column of Figs. 1 and 2, and corresponds well with
that seen in experiment. The experimentally accessible EMD,

FIG. 2. Landau-Zener-Stückelberg interference in the first Bril-
louin zone (BZ) reflected by 2D transient electron momentum
density (tr-EMD) at various time steps during and after the pulse.
A pulse of central frequency 1.3 eV, intensity 1.0×1013 W/cm2,
full width half maximum 2.758 fs, and carrier envelope phase π/2
is employed, with the A-field exhibited and laser induced current
exhibited in panel (a). The points on the A-field curve indicate the
times at which the tr-EMD is evaluated, shown in panels (b)–(f).
In these panels the full evolution of the Landau-Zener-Stückelberg
(LZS) interference can be seen, including both early time kx < 0
(left-hand side of the vertical BZ boundary line) conduction band
excitation, intense excitation at the pulse peak, panel (d), before the
development of the LZS interference fringes on the falling shoulder
of the pulse, panel (e), and the full time kx > 0 LZS interference.

however, provides a wealth of additional information, as we
now describe.

By comparing rows (g)–(i) and (m)–(o) we observe almost
identical residual coherent current, and yet a very different
momentum space LZS excitation as revealed by the EMD. In
particular, in row (m)–(o) we observe a subdominant kx < 0
charge excitation absent in row (g)–(i) and reflecting multi-
ple passes of the avoided crossing due to the side peaks of
the former pulse [see panel (i)]. The presence of the main and
side peaks in the pulse structure allows for multiple pass k-
space trajectories which, due to the pulse envelope, consist of
a series of passes of the avoided crossing from trajectories of
different length in momentum space. This yields both asym-
metric occupation and more complex interference patterns.
Further enhancement of these side peaks [see row (s)–(u) of
Fig. 1 for which the CEP is again φ = +π/2] results in well
developed interference fringes for both positive and negative
kx, quite different to the right-hand side only momentum space
occupation seen for the lower frequency φ = +π/2 pulse
shown in panels (g)–(i). The EMD thus represents a much
more sensitive probe of the LZS effect, able to unveil subtitles
of the interference physics lost in the residual current.

A striking example of this richness of information provided
by EMD versus the residual current can be found in row
(p)–(r). Here it can be seen that widespread excitation occurs
throughout the BZ driven by an intense pulse, the A-field
of which drives trajectories right across the BZ (indicated
by the lines in the Nex/EMD panels). A very complex and
asymmetric LZS interference pattern results from this intense
excitation; however, the widespread occupation of momentum
space drives an overall cancellation of current carrying states
and a vanishingly small residual current.
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FIG. 3. Time-dependent partial density of states (PDOS) pro-
jected onto the l = 1 spherical harmonics. Here the PDOS (in
states/atom/eV) is shown both at t = 0 before the pulse, and at the
end of the simulation after the pulse has been applied. The pump
pulse for panels (a) and (b) is polarized in the x direction, with in-
tensities 1012 W/cm2 and 1014 W/cm2, respectively. As can be seen,
even for almost complete excitation of the π band in which charge is
excited from the π -band minima up to the π∗-band maxima, there is
no excitation into states of px or py character. (c) Band structure of
graphene showing the π and σ band character. Negative and positive
numbers indicate dominance by π and σ character, respectively.

Experimentally, the short time coherent current ultimately
generates heating and a diffusive residual current. This can
therefore not provide a real time probe of the development of
LZS physics. Transient EMD, on the other hand, potentially
provides a real time probe of the ultrashort time evolution
of LZS interference patterns in momentum space. In Fig. 2
we show the transient EMD evaluated before, during, and
after a pump pulse inducing both a coherent current and LZS
interference. One can observe an early time excitation due to
pulse side peaks, panels (b) and (c), followed by a dramatic
excitation in momentum space at the maximum of the main
peak, panel (d). Only after this peak has passed do the final
interference fringes develop [panels (e) and (f)].

Dominance of the π manifold in electron dynamics. The re-
sults for the momentum resolved conduction band occupation
shown in the previous sections, correspond very closely to re-
sults obtained on the basis of model π -band only tight-binding
Hamiltonians. This raises the question of whether this is due
simply to the relatively low energies of the excited charge
(in Figs. 1 and 2 the excited charge resides predominantly
at the K point and the K-M-K line) or whether, for a more

general reason, the π band will always dominate ultrafast laser
induced electron dynamics in graphene. To explore this, in
Fig. 3 we display the partial density of states calculated before
and after the laser pulse. As can be seen in Fig. 3(a), for the
pulse of intensity 1012 W/cm2, the partial density of states
(DOS) after the pulse shows conduction band occupation only
up to 2.5 eV. At these energies [see Fig. 3(c)], only the π

band is available for excited charge. Remarkably, when we
consider a very strong pulse of intensity 1014 W/cm2 the
excited electrons are again only of pz character [Fig. 3(b)],
despite the fact that the laser pulse is sufficiently strong to
excite charge from the minima of the π manifold up to the
maxima of the π∗ manifold. As may be noted from the band
structure [Fig. 3(c)], within this energy range exist many other
bands that would, in principle, be expected to be involved
in the electron dynamics at such high energies. Examination
of the relevant dipole matrix elements reveals that transitions
from π to σ ∗ and π∗ to σ are negligible for laser pulses with
in-plane polarization. Thus even in the highly nonperturbative
regime transitions from the ground state to the σ ∗ manifold
will be strongly suppressed. It might be argued that the partial
DOS, a projection within (touching) muffin tins, does not
account for excitation to delocalized bands of high l character.
Comparison of the interstitial density of states before and after
the pulse shows that there is indeed an increase in interstitial
charge at around 9 eV, possibly indicating transitions from
the π∗ manifold to delocalized bands (note the intersections
between π∗ and high l character bands on the M-
 line);
however, this is a rather small effect. It would thus appear that
the model π -band only tight-binding Hamiltonians provide an
excellent description of the electron dynamics even for very
intense laser pulses.

To summarize we have investigated ab initio the laser in-
duced electron dynamics in monolayer graphene. This system
provides a canonical example of a material for which Landau-
Zener-Stückelberg interferometry can be explored, and we
have shown that direct visualization of the interference fringes
in momentum space is possible via the transient EMD, es-
tablishing transient EMD as an excellent experimental tool
for exploring LZS interference in 2D materials. Examination
of the excited state partial density of states reveals that the
π -band manifold decisively dominates ultrafast laser induced
dynamics in graphene, justifying the deployment of the popu-
lar Hückel tight-binding model. Whether this remains true for
the complex few layer graphene systems, for which such an
approach is the only one that can reasonably be envisioned,
remains an open question.
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