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Anomalous gap ratio in anisotropic superconductors: Aluminum under pressure
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Pressure dependence of the thermodynamic critical field Bc in elemental aluminum was studied by means of
the muon-spin rotation-relaxation technique. Pressure enhances the deviation of Bc(T ) from parabolic behavior,
expected for a typical type-I superconductor, thus suggesting the weakening of the gap ratio 〈α〉 = 〈�〉/kBTc

(〈�〉 is the average value of the superconducting energy gap, Tc is the transition temperature, and kB is the
Boltzmann constant). With the pressure increase from 0.0 to � 1.6 GPa, 〈α〉 decreases almost linearly from
1.73(1) to 1.67(1). Our results imply, therefore, that in elemental aluminum, the gap ratio 〈α〉 is smaller than the
weak-coupled BCS prediction αBCS � 1.764, and it is even further reduced under pressure.

DOI: 10.1103/PhysRevB.103.L060502

In superconducting materials, the coupling strength is gen-
erally established by comparing the reduced gap (the ratio
of the energy gap � to the transition temperature Tc) with
the universal weak-coupling BCS number αBCS = �/kBTc =
eγE /π � 1.764 (γE is the Euler constant, and kB is the Boltz-
mann constant) [1–3]. Based on such a comparison, the
superconductors are divided into the strong-coupled (α �
1.764), intermediate-coupled (α � 1.764), and weak-coupled
(α � 1.764) classes. This division has a profound physical
meaning: the universal value αBCS corresponds to the temper-
ature at which the order parameter is destroyed by its own
thermal fluctuations. Any additional pair-breaking agent can
only suppress Tc and, thus, increase α above the αBCS value.

More accurate than BCS, the Eliashberg theory accounts
for the fact that, while virtual phonons bind electrons into
Cooper pairs, the real (thermal) phonons break them. In the
weak-coupling limit, by definition, Tc is exponentially smaller
than the energy of the pairing bosons, so the concentration
of thermal excited bosons, interacting with superconducting
electrons, is exponentially low. Consequently, the reduced
gap stays exponentially close to αBCS. As coupling becomes
stronger, the ratio of Tc to a typical boson frequency be-
comes larger, and the pair-breaking effect of real bosons is
not negligible anymore. With temperature, their number and,
correspondingly, their pair breaking effect grows, and su-
perconductivity becomes destroyed at Tc < Tc,BCS. Thus, the
reduced gap α = �/kBTc > �/kBTc,BCS = αBCS. By modify-
ing the phonon spectrum, i.e., by adding very soft phonons,
one can generate a paradoxical situation, where supercon-
ductivity is physically from weak coupling (the phonons
generating Tc are exponentially harder than the gap) and yet
have a huge α ratio [4]. One may also consider two different
types of bosons, one pairing and the other pair breaking, even
in virtual diagrams (for instance, the former may be phonons
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and the latter spin fluctuations) [5], albeit, generally speaking,
such a situation should also lead to an enhancement of α.

An opposite effect, a phonon spectrum that would render
α < αBCS, appears on the first glance impossible (barring a
dramatic change of the actual phonon spectrum between T =
0 and T = Tc). Note however that the above consideration
implicitly assumes the superconducting state characterized
by one single-order parameter, single in the sense that there
is one number for all Cooper pairs in the system. This as-
sumption is, of course, violated in such cases as multiband
and/or anisotropic superconductivity, where the order param-
eters vary over the Fermi surface. In that case, Tc is uniquely
defined, but the way one collapses the function �(k) to a
single average number 〈�〉 is ambiguous. Interestingly, some
natural definitions of 〈�〉 resulting from experimental meth-
ods of measuring the order parameter may actually render the
apparent 〈α〉 = 〈�〉/kBTc to be smaller than αBCS.

Elemental aluminum is often cited as a canonical weak-
coupling superconductor. Indeed, the tunneling experiments
of Blackford and March [6], performed on Al polycrys-
talline films resulted in α = 1.765(5), in excellent agreement
with the BCS prediction. At the same time, experiments on
high-quality aluminum single crystals revealed that the super-
conducting gap is anisotropic, i.e., it has different values along
different crystallographic directions. The α value was found
to vary from � 1.5 to � 1.8 [7–9], around the Fermi surface.
This suggests, after a closer look, that the average reduced
gap 〈�〉 (of course, depending on the averaging protocol) may
become smaller than the universal BCS limit [10,11].

The first attempts to evaluate gap anisotropy of super-
conducting aluminum theoretically go back to 1971 [12,13].
These were using empirical model pseudopotentials and a
spherical Fermi surface and were later somewhat improved to
include a realistic Fermi surface [14]. Meza-Montes et al. [15]
improved that further by taking into account the anisotropy
of the Coulomb pseudopotential μ∗, albeit they never took
into account the anisotropy of the logarithmic renormalization
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of μ∗, even though it can be argued to be more important
[16]. While these calculations may be considered subpar by
modern standards, they agree qualitatively with the experi-
mental observations of Refs. [7–9] (see also a cumulative table
in Ref. [17]). It is interesting to note that one of the early
theoretical predictions, which is not verified experimentally
so far, suggests that the gap anisotropy in aluminum should
greatly increase with the applied pressure p [18].

In this paper, we present experimental evidence that the
reduced thermodynamic gap in elemental aluminum, defined
as the gap corresponding to the thermodynamic critical field,
〈�〉 = Bc(0)/

√
4πNF (0) [NF (0) is the density of states at the

Fermi level and Bc(0) = Bc(T = 0) is the zero-temperature
value of the thermodynamic critical field], is smaller than
αBCS and it decreases under pressure. The analysis of the
experimental Bc(T, p) dependencies within the anisotropic
gap model of Clem [10,11] suggest that the mean-squared
anisotropy value

〈a2〉 ≡ [�(k) − 〈�〉]2

〈�〉2
, (1)

changes as the pressure increases from p = 0.0 to � 1.6 GPa,
from 〈a2〉 = 0.013(1) to 0.035(2), which in turn, leads to a
decrease of 〈α〉 from 1.73(1) to 1.67(1).

The description of cylindrically shaped Al samples,
piston-cylinder types of pressure cells, and transverse-field
muon-spin rotation-relaxation (TF-μSR) under pressure ex-
periments are given in the Supplemental Material [19]. The
Supplemental part includes Refs. [20–27].

The TF-μSR measurements were performed in the inter-
mediate state of superconducting aluminum, i.e., when the
sample volume is separated into the normal state and the su-
perconducting (Meissner) domains [2,3,28–35]. The external
field Bex was applied perpendicular to the cylindrical axis of
the sample. In this geometry, the demagnetization factor was
estimated to be n � 0.42 [19,20], so the intermediate state
was set in the region of Bc > Bex � 0.58Bc. The modified
B-T -scan measuring scheme, as discussed in Refs. [33,35],
was used. At each particular temperature, the measured points
were reached by first decreasing Bex to zero and then increas-
ing it back to the measuring ones. The B-T points were taken
along � 0.9, 0.825, 0.75, and 0.675Bc(T ) lines by considering
the Bc(p, T ) curves as they were determined in Refs. [36,37].
Such a procedure allows us to exclude effects of ‘supercool-
ing’ [38–46], which were found to be particularly strong in
the elemental aluminum superconductor [38,39,45].

The temperature dependencies of the thermodynamic
critical field Bc at pressures ranging from p = 0.0 to
� 1.56 GPa are presented in Fig. 1(a). The magnetic field dis-
tribution in a type-I superconductor in the intermediate state,
which is probed directly by means of TF-μSR, consists of two
peaks corresponding to the response of the domains remaining
in the Meissner state (B = 0) and in the intermediate state
(B ≡ Bc > Bex). Consequently, in TF-μSR experiments, the
value of Bc is directly and very precisely determined by mea-
suring the position of the B > Bex peak [32–35,46–51]. The
raw TF-μSR data and details of the data analysis procedure
are presented in the Supplemental Material [19]. Deviations
of the Bc vs. T curves from the parabolic function D(T 2) =
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FIG. 1. (a) Temperature dependencies of the thermodynamic
critical field Bc of elemental aluminum measured at pressures p =
0.0, 0.59, 1.09, and 1.56 GPa. The solid lines are fits of Eqs. (2) and
(4) to the low-temperature [(T/Tc )2 < 0.1] and the high-temperature
[0.5 < (T/Tc )2 < 1] parts of Bc(T 2, p) data, respectively. (b) Tem-
perature dependencies of the deviation function D(T 2) = Bc(T 2) −
Bc(0)[1 − (T/Tc )2] at pressures p = 0.0, 0.59, 1.09, and 1.56 GPa.
The solid lines are theoretical D(T 2, p) curves, which were recon-
structed by using parameters obtained from fits of Eqs. (2) and (4) to
Bc(T 2, p) data (see text for details).

Bc(T 2) − Bc(0)[1 − (T/Tc)2] are shown in Fig. 1(b).
Following Refs. [10,11,52–55], the shape of D(T 2) depends
strongly on the �/kBTc ratio, and it is also expected to be
sensitive to the symmetry of the superconducting energy gap.

Bearing in mind the anisotropic single-gap behavior of
elemental aluminum at ambient pressure [7–9], the analysis
of Bc(T, p) dependencies was performed by means of the
phenomenological model of Clem [10,11], which considers
effects of gap anisotropy on fundamental thermodynamic
quantities of a superconductor and is correct in the weak
anisotropy limit. Strictly speaking, the analysis of temper-
ature dependencies of various thermodynamic quantities in
an anisotropic superconductor requires the exact knowledge
of a momentum dependence of the superconducting energy
gap [56], as well as the shape of the Fermi surface. Using
the spherical Fermi surface approximation, Clem [10] ob-
tained the analytical expressions for Bc(T ) and D(T ) in the
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low- and high-temperature regimes in terms of the mean-
squared anisotropy, Eq. (1).

Following Clem [10], in the low-temperature regime
(T/Tc � 0.3):

bc(t ) � 1 − 1.057(1 + 2〈a2〉)t2 − 0.559(1 + 4〈a2〉)t2, (2)

and

D(t ) � −(0.057 + 2.11〈a2〉)t2 − 0.559(1 + 4〈a2〉)t4. (3)

Here, the notations of the reduced temperature t = T/Tc and
the reduced field bc(t ) = Bc(T )/Bc(T = 0) are used.

At higher temperatures (0.7 � T/Tc � 1), the equations
for bc(t ) and D(t ) become [10]:

bc(t ) � 1.7367(1 − 〈a2〉)(1 − t )2[1 − (0.273 − 0.908〈a2〉)

− (0.0949 − 0.037〈a2〉)(1 + t )], (4)

and

D(t ) � −0.1317(1 + 6.6〈a2〉)(1 − t2)

+ 0.0986(1 + 3〈a2〉)(1 − t2)2

+ 0.0287(1 + 6.15〈a2〉)(1 − t2)3. (5)

Note that Eqs. (2) and (4) are basically the same as Eqs. (3)
and (5). These two sets of equations are only different by
the term 1 − t2, which is introduced to obtain the devia-
tion function D(t ) from the temperature evolution of the
thermodynamic critical field bc(t ) in a way D(t ) = bc(t ) −
(1 − t2). Consequently, only the Bc(T 2, p) datasets were an-
alyzed [solid lines in Fig. 1(a)]. The theoretical D(T 2, p)
curves were further reconstructed by using parameters ob-
tained from fits of Eqs. (2) and (4) to Bc(T 2, p) curves [solid
lines in Fig. 1(b)]. The parameters obtained from the fits,
namely the superconducting transition temperature Tc, the
zero-temperature value of the thermodynamic critical field
Bc(0), and the mean-squared anisotropy 〈a2〉, are summarized
in Fig. 2. In addition to the results of this paper, the experi-
mental Bc(T, p = 0) data of Harris and Mapother [55] were
also reanalyzed by using the above-described approach (black
asterisk symbols in Figs. 2 and 3).

From the results presented in Fig. 2, the following four
important points emerge: (i) The fit parameters for am-
bient pressure TF-μSR data coincide with that obtained
by reanalyzing the results of magnetization data of Har-
ris and Mapother [55]. (ii) The linear fit of Tc(p) and
Bc(0, p) dependencies result in dTc/d p = 0.248(7) K/GPa
and dBc(0, p)/d p = 2.20(1) mT/GPa, respectively, which
stays in a good agreement with the previously published
data [36,37,57,58]. (iii) The zero-pressure value of the
mean-squared anisotropy parameter was found to be 〈a2〉 =
0.013(1). This value stays in agreement with the results of tun-
neling experiments of Blackford [8] and Kogure et al. [9] and
the low-temperature specific heat measurements of Cheeke et
al [59] reporting 〈a2〉 � 0.009–0.01. Markowitz and Kadanoff
[60] estimate 〈a2〉 � 0.011 by analyzing measurements of
the critical temperature as a function of impurity doping by
Chanin et al. [61]. The theoretical predictions of Leavens and
Carbotte [13,62] and Meza-Montes et al. [15] gave 〈a2〉 =
0.0084 and 0.015, respectively. (iv) With the pressure increase
from p = 0.0 to � 1.6 GPa, the mean-squared anisotropy
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FIG. 2. Pressure dependence of (a) the superconducting transi-
tion temperature Tc, (b) the zero-temperature value of the thermo-
dynamic critical field Bc(0), and (c) the mean-squared anisotropy
〈a2〉 of elemental aluminum. The quantities were obtained from the
analysis of Bc(T 2, p) data within the framework of the anisotropic
model of Clem [10,11]. The circles are the data from this paper,
and the asterisks are obtained by analyzing the data of Harris and
Mapother [55]. The lines are linear fits.

parameter 〈a2〉 almost triples, from 0.013(1) to 0.035(2) [see
Fig. 2(c)]. Bearing in mind that, within the model of Clem
[10,11], the anisotropic gap behavior follows:

�(k) = 〈�〉[1 + a(k)],

this suggests that the ratio between the smallest and the
biggest gap [�(k)max/�(k)min] increases from � 1.25 at am-
bient pressure to � 2.2 at p � 1.6 GPa. Here, the simplest
case (the two-gap case) with a(k) = ±a0 and with the equal
weight of 〈�〉(1 ± a0) gaps was considered.

As the next step, we are going to compare the results of
this paper with the calculations of Leavens and Carbotte [18].
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FIG. 3. (a) Dependence of the averaged gap value 〈�〉 on the rel-
ative volume change −δV/V . The dashed line is the theory prediction
of Leavens and Carbotte [18]. (b) Dependence of 〈α〉 = 〈�〉/kBTc

on −δV/V . The dashed line is the weak-coupling BCS number
αBCS � 1.764. The closed circles correspond to the data obtained
within this paper. The black asterisks are parameters obtained after
analyzing the data of Harris and Mapother [55].

Figure 3(a) shows the average gap value 〈�〉 as a function of
the reduced volume −δV/V . From the present data, the value
of 〈�〉 was calculated via [10]

〈�〉
kBTc

= 1.764

(
1 − 3

2
〈a2〉

)
,

and the relative volume change was obtained as −δV/V = K p
(K � 76 GPa is the bulk modulus of aluminum, Ref. [63]).
Figure 3(a) points to very good agreement between the theory
and the experiment.

Figure 3(b) shows the dependence of 〈α〉 = 〈�〉/kBTc on
the relative volume change −δV/V . The results presented in
the graph are twofold: (i) All the experimental points lie be-
low the weak-coupling BCS value αBCS � 1.764. As already
stated in the introduction, it is not possible for isotropic su-
perconductor to have the coupling strength parameter smaller
than the universal BCS number α ≮ αBCS. This implies that
the superconducting energy gap in elemental aluminum must
be anisotropic, and it remains anisotropic within the full pres-

sure range studied here. Only in this particular case, 〈α〉 of
aluminum may become smaller than αBCS. (ii) The sample
compression leads to continuous decrease of 〈α〉. Our exper-
iments for aluminum indicate that the effect is quite large.
Here, 〈α〉 decreases by slightly more than 5% for a relative
volume change of � 2%.

Leavens and Carbotte [18] provided a simple explana-
tion for the pressure dependence of the superconducting gap
anisotropy. Following Refs. [10,18], the dominant source of
the gap anisotropy is the anisotropy of the phonon-mediated
electron-electron interaction. When the metal is subjected to
a hydrostatic pressure, the Fermi sphere and the Brillouin
zone scale together, so that the shape of the complicated
surface generated for the initial point (θ, φ) does not change.
It is expected, therefore, that even though the absolute value
of the electron-phonon coupling constant λe-p changes as a
function of pressure, the anisotropy of the phonon-induced
electron-electron interaction remains unaltered. Bearing in
mind that the Coulomb pseudopotential parameter μ∗ changes
very slowly with pressure as compared with the phonon-
mediated interaction, the anisotropy in the total interaction
increases. This said, full density functional theory calculations
of the anisotropic Eliashberg function and k-dependent order
parameter in Al are highly desirable.

The above arguments would also imply that the smaller the
ratio of the electron-phonon interaction to the strength of the
Coulomb interaction, the faster the increase of the energy gap
anisotropy with pressure. In strong coupling superconductors,
λe-p is about 10 times higher than μ∗ ∼ 0.1–0.15, which is
only weakly dependent on the material. Note that the size of
μ∗ is fixed by the Tolmachev logarithm [64] μ∗ ≈ μ/[1 +
μ ln(θD/Tc) ≈ 1/ ln(θD/Tc). It might be expected, therefore,
that the variation of the electron-phonon interaction as a func-
tion of pressure in strongly coupled superconductors will lead
to a small pressure effect on the gap anisotropy. In weakly
coupled superconductors, however, λe-p is smaller, and the
pressure dependence of the superconducting gap anisotropy is
expected to be more pronounced. This is definitively the case
for aluminum, where λe-p ∼ 4μ∗.

To conclude, the pressure dependence of the thermody-
namic critical field Bc in elemental aluminum was studied
by means of the muon-spin rotation-relaxation. Pressure was
found to enhance the deviation of Bc(T ) from the parabolic
behavior, thus suggesting the weakening of the reduced
gap 〈α〉 = 〈�〉/kBTc. The analysis of the experimental data
within the anisotropic gap model of Clem [10,11] suggests
that, with the pressure increase from 0.0 to � 1.6 GPa, the
mean-squared anisotropy value 〈a2〉 changes from 0.013(1) to
0.035(2), which in turn, leads to a change of 〈α〉 from 1.73(1)
to 1.67(1).
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