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Hydrodynamics of nonintegrable systems from a relaxation-time approximation
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We develop a general kinetic theory framework to describe the hydrodynamics of strongly interacting,
nonequilibrium quantum systems in which integrability is weakly broken, leaving a few residual conserved
quantities. This framework is based on a generalized relaxation-time approximation; it gives a simple, but
surprisingly accurate, prescription for computing nonequilibrium transport even in strongly interacting systems.
We validate the predictions of this approximation against matrix product operator calculations on chaotic
quantum spin chains, finding surprisingly good agreement. We show that despite its simplicity, our framework
can capture phenomena distinctive to strongly interacting systems, such as widely separated charge and energy
diffusion constants.

DOI: 10.1103/PhysRevB.103.L060302

Hydrodynamics has experienced a revival in the past
decade as an effective theory of strongly interacting quantum
matter far from equilibrium [1–10]. A major factor in this
revival has been the advent of new experimental platforms,
from quark-gluon plasmas [11] to strongly interacting ultra-
cold gases [12,13] and pristine solid-state systems that feature
strong interactions and long mean free times [14–17]. Hy-
drodynamics is particularly rich for low-dimensional fluids,
featuring transport anomalies such as long-time tails [18–23];
in one dimension, hydrodynamics is further enriched by the
proximity of many realistic systems to integrability. In the
integrable limit, conventional hydrodynamics breaks down,
and a new framework, called “generalized hydrodynam-
ics” (GHD), has been developed [24–50]. GHD incorporates
the distinctive features of integrable dynamics: namely, the
presence of infinitely many conservation laws and of sta-
ble ballistically propagating quasiparticles. This framework
has led to quantitative explanations of many phenomena,
including Drude weights [27,29,31,35], diffusion constants
[39–41,51–53], and the presence of anomalous transport in
strongly interacting spin chains [51,54–66].

Realistic systems, however, are only approximately in-
tegrable. On short timescales they obey GHD, but on the
longest timescales they cross over to conventional hydro-
dynamics. A general theory of this crossover has remained
elusive, despite recent progress [21,56,67–90]. In principle,
one can write a collisional Boltzmann equation for weak in-
tegrability breaking [84,85]. However, in general the collision
integral is intractable, as it depends on all the matrix elements
of the integrability-breaking perturbation. In special cases,
such as long-range interactions, slowly fluctuating noise, or
weakly interacting systems, the integrability-breaking pertur-
bation can itself be expressed in terms of GHD data [84,85].
More generally, however, integrability-breaking perturbations
lie outside GHD: for example, umklapp scattering involves

large momentum transfer, and thus cannot be captured by
a long-wavelength theory such as GHD. In the absence of
the GHD framework, evaluating the collision integral is an
intractable task.

This work addresses the question of integrability breaking
from a fundamentally different perspective. Instead of micro-
scopically deriving the collision integral, we adopt a simple
but general approximation, which we call the “generalized
relaxation time approximation” (GRTA), by analogy with the
conventional relaxation time approximation (RTA) for weakly
interacting electrons [91]. The GRTA assumes that there is
a single dominant relaxation time that controls the onset of
chaos. This assumption allows us to efficiently simulate dy-
namics away from the integrable limit. Although our approach
resembles the conventional RTA in positing a unique relax-
ation time, its implementation and physical consequences are
completely different. The RTA deals with nearly free particles,
so their scattering kinematics is simple. By contrast, in an
interacting integrable system, the momentum carried by each
quasiparticle is a nonlinear functional of the full quasiparticle
distribution function. Thus, when one describes a scattering
process in an integrable system, not only the matrix elements
but also the δ functions conserving momentum and energy are
nontrivial to evaluate.

Instead, we implement the GRTA as follows. In GHD,
one regards a system as locally being in a generalized
Gibbs ensemble (GGE) [92–94], with chemical potentials for
each conservation law [94]. The key step in our approach
is to replace the local GGE with a local thermal Gibbs
state, subject to the residual conservation laws, at some fi-
nite rate 1/τ (where τ is the generalized relaxation time).
The main assumption is that there is a unique local relax-
ation rate for the quasiparticle distribution function. This is
justified under certain assumptions, and (as we discuss be-
low) fails sometimes; however, we find that it is remarkably
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accurate at reproducing numerical time evolution, even when
the integrability-breaking perturbations are not especially
small. For initial states far from equilibrium, the GRTA (un-
like the RTA) gives rise to nontrivial relaxation dynamics, as
the local equilibrium state is a nontrivial functional of the local
quasiparticle distribution. Moreover, contrary to the simplest
implementation of the RTA, the GRTA preserves conservation
laws and is suitable to study hydrodynamics. Thus, we argue
that the GRTA captures the “generic” crossover from general-
ized to conventional hydrodynamics.

Boltzmann equation. GHD describes the dynamics of
integrable systems in terms of their quasiparticles. We
characterize quasiparticles with a given quantum number (“ra-
pidity”) λ by their density ρλ(x, t ). Note that λ is a shorthand
for both continuous and discrete labels. The distribution of
quasiparticles ρλ(x, t ) is in one-to-one correspondence with
a local equilibrium macrostate [95]. In an integrable system
with conserved charges {Q̂n}, local equilibrium can be equiv-
alently characterized by a generalized Gibbs ensemble (GGE)
density matrix ρ̂GGE = Z−1e− ∑

n βnQ̂n . In integrable systems,
quasiparticles scatter elastically with phase shifts leading to
Wigner time delays [29,33]: the effective velocity veff

λ [ρ] of
a quasiparticle with rapidity λ depends on the density of
all the other quasiparticles [24,25,46,96]. Transport proper-
ties can be inferred from the fact that quasiparticles carry
some charge hi(λ), where i labels the conserved charges
of the integrable system. The density of charge i reads
qi(x, t ) = ∫

dλ hi(λ)ρλ(x, t ), with the associated Euler cur-
rent ji(x, t ) = ∫

dλ hi(λ)ρλ(x, t )veff
λ [ρ] + · · · , where “· · · ”

represents higher-order (diffusive) corrections [39–41,52] that
will be negligible for our purposes. The conservation laws
∂t qi + ∂x ji = 0 form the basis of GHD [24,25].

We now imagine perturbing such an integrable system
with Hamiltonian Ĥ0 by a small, nonintegrable perturbation
V̂ of order g that destroys all but a few conservation laws.
We assume that the expressions for charges and currents are
unchanged—neglecting O(g) corrections to these quantities,
and force terms that are treated elsewhere [44]. The leading
effect of the nonintegrable perturbation is to thermalize quasi-
particle distributions at long times t � O(g−2). Integrability
breaking endows the GHD equation with a collision integral

∂tρλ + ∂x
(
veff

λ [ρ]ρλ

) = Iλ[ρ] (1)

that mixes quasiparticle sectors. This collision integral Iλ can
in principle be derived perturbatively using Fermi’s golden
rule (FGR), and is O(g2) [84,85,87]. It involves the matrix
elements (form factors) of the integrability breaking pertur-
bations, which can be expressed in terms of hydrodynamical
data only for noninteracting systems, and for perturbations
involving low momentum transfer such as slowly varying
noisy potentials or long-range interactions [84]. Equation (1)
was analyzed within linear response in Ref. [84], and it was
shown to lead to diffusive hydrodynamics in general.

Generalized relaxation-time approximation. For most
physical integrability-breaking perturbations, the matrix ele-
ments of the perturbation cannot be expressed in terms of
hydrodynamic data. In the few cases in which the collision
integrals can be written down explicitly, they are impractical
to implement numerically, even for simple physical processes

like particle loss in a Bose gas [97]. For context, we remark
that even for weakly interacting fermions, collision integrals
are often approximated by using the relaxation-time approxi-
mation (RTA), which suffices to capture most of the relaxation
physics and to describe experiments. Here, we introduce a
generalized relaxation-time approximation (GRTA), which
amounts to choosing a simple form for the collision integral:

∂tρλ + ∂x
(
veff

λ [ρ]ρλ

) = −(
ρλ − ρGibbs

λ [ρ]
)
/τ. (2)

This right-hand side enforces local thermalization on a typical
relaxation timescale τ as follows: ρGibbs

λ [ρ] is a nonlinear
functional of the state ρλ, defined as the distribution of
quasiparticles of a Gibbs state with the same value of the
conserved quantities qα (α = 1, . . . , N corresponding to the
charges preserved by the integrability breaking perturbation)
as the state ρλ. For example, consider a Bose gas where
the integrability-breaking perturbation preserves energy E ,
particle number N , and momentum P. Then the distribution
ρGibbs

λ [ρ] corresponds to the (boosted) Gibbs ensemble den-
sity matrix ρ̂Gibbs = 1

Z e−β(Ĥ−μN̂−νP̂), where β, μ, and ν are
chosen so that the average particle number, energy, and mo-
mentum are the same as in the state ρλ. By definition, we have∫

dλ(ρλ − ρGibbs
λ )hα (λ) = 0, ensuring the conservation of the

charges Q̂α .
Physically, the GRTA assumes that local relaxation is

controlled by a single relaxation rate. Of course, realistic
FGR collision integrals have a lot more structure, involving a
hierarchy of relaxation rates. However, we expect this approx-
imation to capture the key physics of integrability-breaking.
One can formalize this intuition as follows. The relaxation
of charges in the presence of weak integrability-breaking is
captured by the equation ∂t Qi = −∑

j 
i jQ j , where � is
a matrix that is itself a functional of the equilibrium state
[84,85]. The spectrum of the matrix � contains zero modes
corresponding to the residual conserved charges, as well as
other eigenmodes that capture the characteristic decay rates.
If there is a gap between the zero modes and the decaying
modes, one can identify this gap with 1/τ , and replace the
matrix � with a projector onto modes that decay at rate
∼1/τ , which is justified at long enough times where e−t/τ will
dominate exponentials decaying with faster rates. The GRTA
corresponds to replacing �−1 ≈ τ for all decaying charges,
which approximately coincides with the projection approach,
provided that all residual conserved currents have approxi-
mately similar overlaps with the slowest-decaying modes of
�. (This construction indicates that the GRTA will fail when-
ever there are arbitrarily slowly relaxing modes, as we expect
on physical grounds, and also when the currents of residual
charges have very different overlaps with the slowest-relaxing
modes of �.)

We evaluate the right-hand side of Eq. (2) as follows. We
compute the (density of) conserved charges qα (say particle
number, momentum, and energy) in the state ρλ(x, t ), and
we invert the equation of states of the model—known from
the equilibrium thermodynamic Bethe ansatz (TBA) [98]—to
find the Lagrange multipliers (in our example, β, μ, and ν)
of the Gibbs state corresponding to those values. Using the
TBA, we then compute the density of quasiparticles ρGibbs

λ [ρ]
corresponding to those Lagrange multipliers and thus Iλ [99].
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Note that we use the equation of states of the unperturbed
(integrable) model. This is justified perturbatively by the fact
that the integrability-breaking perturbation smoothly modifies
thermodynamic quantities and the equation of states (with
small changes if the perturbation is weak), while it dramati-
cally affects the dynamics at long times. We take τ to be an
unknown constant, a single phenomenological parameter to be
determined by comparing the solution of Eq. (2) to numerics
or experiments.

Numerical solution. To implement this GRTA scheme nu-
merically, we develop a general numerical scheme to solve
(1), which can be used both near and far from equilibrium.
Following the numerical methods of Refs. [28,44,49] in the
integrable case, we find it convenient to work with the “normal
modes” of GHD, which are given by the occupation ratios
(Fermi factors) nλ = ρλ/ρ

tot
λ , where ρ tot

λ = ρλ + ρh
λ is the total

density of states at rapidity λ, and ρh
λ is the density of holes.

There is a one-to-one correspondence between the density of
quasiparticles ρλ and the occupation ratios nλ, provided by the
Bethe equations. In terms of nλ, the Boltzmann equation (1)
takes the advection form

∂t nλ + veff
λ [n]∂xnλ = Iλ[n], (3)

where Iλ is simply related to Iλ[ρ] [99]. We then solve this
equation by finite elements, discretizing space, time, and
rapidity. We use a backward first-order scheme nλ(x, t ) =
nλ(x − veff

λ [n(x, t )]�t, t − �t ) + �t Iλ[n(x, t )], where cru-
cially, the velocity and collision integrals on the right-hand
side are evaluated at time t to improve stability. We solve this
equation by iteration, and we check convergence with respect
to the small parameters �t , �x, and �λ.

Energy transport in spin chains. The GRTA approach has
the advantage of being very general, and it can be applied
to chaotic spin chains near integrability. To illustrate this,
we consider the spin- 1

2 XXZ spin chain with integrability-
breaking perturbations

Ĥ =
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + �Ŝz

i Ŝz
i+1

) + V̂ , (4)

with anisotropy � = 1
2 , and V̂ = hx

∑
i(−1)iŜx

i or V̂ =
J ′

x

∑
i(−1)iŜx

i Ŝx
i+1. When V̂ = 0, this model is integrable, and

energy transport is purely ballistic as the total energy current
is a conserved quantity. As higher-order corrections vanish
exactly, energy transport can be captured extremely well by
GHD [28]. The staggered perturbation V̂ breaks integrability
and the U (1) symmetry of the XXZ model.

We consider energy transport in the Hamiltonian (4) by
preparing a local region with temperature T = 10 embedded
in a uniform equilibrium background with temperature T = 2
[100]. We simulate the dynamics of this system up to time t =
20 by evolving the density matrix using time-evolving block
decimation (TEBD) [101–103] and compare with the GRTA
(2) for various values of τ . We compare the local temperature
profiles T (x, t ) between the two approaches, using the equi-
librium equation of state of Eq. (4) to convert energy density
to temperature. (This accounts for the shift in the equilibrium
energy density due to the perturbation V̂ , which can readily be
captured using perturbation theory.) We find a best fit for the

FIG. 1. Energy transport in nonintegrable spin chains: inverse
temperature profiles β(x, t ) = 1/T (x, t ) in an XXZ spin chain with
a staggered transverse field hx breaking integrability. The TEBD
data for hx = 0.2 are described very well by Eq. (3) and GRTA
with τ � 8. Left inset: Variances of the energy profiles vs time
from TEBD, for various values of hx , showing a crossover between
ballistic and diffusive transport. Right inset: The fitted values of τ

agree with the FGR scaling (5) for both g = hx (staggered x-fields)
and g = J ′

x (staggered xx-couplings).

single parameter τ by matching the full temperature profiles
from the TEBD simulations and the GRTA.

We find that the GRTA is able to describe the nonintegrable
dynamics of (4) remarkably well with a single parameter τ for
each V̂ , for various values of hx or J ′

x ranging from 0.05 to 0.6,
corresponding to almost two decades in τ . Moreover, the fitted
values of τ all agree very well with the simple FGR scaling

τ � Cg−2, (5)

with C ≈ 0.32(5) for g = hx (staggered x-fields), and C ≈
4.95(5) for g = J ′

x (staggered xx-couplings). This is remark-
able, as in general we expect that relaxation times should
depend on temperature, and the initial state considered has a
wide range of temperatures. Allowing for limited dependence
of τ on the state ρ—such as through the local temperature—
might be necessary to capture strongly nonequilibrium setups
with even wider temperature ranges. While the variance of the
profiles of the local perturbation in energy grows quadratically
(indicating ballistic transport) in the integrable case, it crosses
over to linear (diffusive) growth for times t � τ .

This scaling implies that the whole time evolution for all
values of g we consider can be described quite accurately
using a single free parameter C. While we obviously expect
corrections to this GRTA approach, combined with the ex-
pected FGR scaling (5), it clearly captures most of the physics
of integrability breaking. Surprisingly, the GRTA is able to
describe energy transport even for strongly chaotic chains for
which the relaxation time τ is O(1).

To illustrate the predictive power of the GRTA, we study
energy transport for a more complicated inhomogeneous
initial state, for various values of the staggered field hx, com-
paring the GRTA to TEBD (Fig. 2). Note that there is no free
parameter here, as the values of the relaxation time τ (hx ) are
fixed from the analysis of Gaussian initial states in Fig. 1,
and they follow approximately Eq. (5). The agreement is
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FIG. 2. Generic energy transport in chaotic spin chains: inverse
temperature profiles β(x, t ) = 1/T (x, t ) at time t = 20 in an XXZ
spin chain with a staggered transverse field hx breaking integrability,
comparing TEBD and GRTA starting from a nontrivial inhomo-
geneous initial state. The values of τ in GRTA for each hx were
determined from Fig. 1.

remarkable, and it illustrates that the GRTA captures energy
transport in this generic nonintegrable spin chain not only
qualitatively, but also to a large extent quantitatively (the error
between GRTA and TEBD is at most 2%) (see Fig. 2).

Hydrodynamics of nonintegrable Bose gases. We also
used the GRTA to capture the crossover from generalized
to conventional hydrodynamics in one-dimensional Bose
gases, described by the Lieb-Liniger model [99]. We con-
sidered integrability-breaking perturbations that either relax
or preserve momentum, and we implemented both far-from-
equilibrium free expansions into vacuum of a cloud of atoms
which models experiments on ultracold Bose gases [43,104–
114], and linear-response setups where the initial state is
a small local perturbation on top of an equilibrium Gibbs
state. For Bose gases, one can consider integrability-breaking
perturbations that conserve momentum, as well as energy
and particle number. We briefly summarize some key find-
ings [99]. (i) For perturbations that conserve energy, particle
number, and momentum, we recover the hydrodynamics of
a conventional fluid, with separate heat and sound peaks.
(ii) For perturbations that conserve only energy and particle
number, we find well-separated diffusion constants for these

two conserved quantities. This is a natural consequence of
GHD, since the energy and particle-number Drude weights are
different, but it illustrates the strongly interacting nature of the
dynamics we are able to capture. (In noninteracting systems,
these quantities would be linked by the Wiedemann-Franz
law.) (iii) Finally, although the GRTA assumes a uniform
relaxation time τ , starting from nonequilibrium states we find
that different charges can approach their equilibrium values at
different rates. This is due to the highly nonlinear nature of
the GRTA, discussed above.

Discussion. In this work, we have introduced the GRTA as
a numerically efficient approximation to study the nonequilib-
rium dynamics of systems with weak integrability-breaking.
The GRTA treats integrability-breaking in a rather drastic
approximation, where all but the residual conserved charges
decay on a single timescale τ . Nevertheless, this approxima-
tion works surprisingly well to capture the hydrodynamics
of physically relevant integrability-breaking perturbations
V̂ (such as a staggered transverse field in the XXZ model)
at the cost of introducing τ (g) = Cg−2 with a single fit pa-
rameter C. Many natural extensions of this method suggest
themselves. For instance, in cases in which some charges relax
much slower than others, we can treat the dynamics of the fast
charges within the GRTA (treating the slow modes as con-
served) and then relax the slow charges separately. This could
be relevant, for example, in ultracold atomic experiments,
where integrability-breaking due to collisions can be much
faster than atom loss or momentum relaxation due to the trap.
Another natural extension would be to add noise to the GRTA
equations (of strength given by the fluctuation-dissipation the-
orem). Finally, our implementation of the integrable dynamics
itself has been restricted to Euler scale hydrodynamics. An
important open question is how to develop an efficient scheme
for numerically solving the GHD equations beyond the Euler
scale [39]; incorporating the GRTA into this scheme would
allow us to answer currently open questions about the fate of
anomalous diffusion in nonintegrable spin chains [86].
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