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We introduce a self-consistent theory of mobility edges in nearest-neighbor tight-binding chains with

quasiperiodic potentials. Demarcating boundaries between localized and extended states in the space of system
parameters and energy, mobility edges are quite typical in quasiperiodic systems which lack the energy-
independent self-duality of the commonly studied Aubry-André-Harper model. The potentials in such systems
are strongly and infinite-range correlated, reflecting their deterministic nature and rendering the problem distinct
from that of disordered systems. Importantly, the underlying theoretical framework introduced is model inde-
pendent, thus allowing analytical extraction of mobility edge trajectories for arbitrary quasiperiodic systems. We
exemplify the theory using two families of models and show the results to be in very good agreement with the
exactly known mobility edges as well as numerical results obtained from exact diagonalization.
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The phenomenon of Anderson localization [1] is con-
ventionally discussed in the context of disordered quantum
systems. Quenched randomness is not, however, a prerequisite
for localization. Indeed there exists a family of systems—
those with quasiperiodicity—which are nonrandom and
deterministic yet host localization. The simplest and arguably
most famous member of the family, the Aubry-André-Harper
(AAH) model [2,3], hosts a localization transition [2] already
in one dimension. Quasiperiodic chains also commonly show
other interesting phenomena such as mobility edges, mul-
tifractal eigenstates both at and away from criticality, and
“mixed phases” with both extended and localized eigenstates
[4-16], and are readily implemented in experimental quantum
emulators with ultracold atoms [17,18].

While elusive in d < 2-dimensional, short-ranged disor-
dered systems, mobility edges (ME) which demarcate the
boundary between localized and extended states in the space
of Hamiltonian parameters and energy are quite commonplace
in quasiperiodic systems. The aforementioned AAH model is
in effect a special case, where all eigenstates undergo a local-
ization transition at a unique critical value of the quasiperiodic
potential strength, and MEs cease to exist [2]. This is due to
an exact duality in the model which is independent of energy.
Any distortion of the model which breaks this duality typically
leads to a genuine mobility edge in the spectrum.

Previous successes in understanding mobility edges in such
systems have tended to focus on ideas specific to partic-
ular models, such as energy-dependent generalized duality
transformations [8—10] or continuum models with bichro-
matic incommensurate potentials [12,13]. The propensity of
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quasiperiodic models to possess MEs naturally means a the-
oretical framework to predict and understand them, which is
model independent, is of basic importance, and this consti-
tutes the central motivation of the present work.

We introduce a self-consistent theory of mobility edges in
quasiperiodic systems based on the analysis of the local propa-
gator, G;(1) = —i®(t) (jle~*"| j), which physically measures
the return probability amplitude of a state initialized at site j.
The propagator is analyzed in the energy (w) domain, wherein
it acquires a self-energy whose imaginary part, A j(w), is the
central quantity of interest. Physically, A ;(w) is proportional
to the rate of loss of probability from site j into states of
energy w and is thus a natural diagnostic for localization
or its absence. The characteristics of A;(w) have in fact
long proven successful in understanding Anderson transitions
[1,19-24]. However, much of the analytical progress there was
rendered possible by the independence of the random site en-
ergies and consequent independence of the local self-energies.
Quasiperiodic systems in this regard present a significant chal-
lenge, as the deterministic nature of the potential means the
site energies and self-energies are strongly and infinite-range
correlated.

As concrete models for establishing and testing the theory,
we consider one-dimensional nearest-neighbor tight-binding
Hamiltonians of form

L—1 L-2
H=VY ecic,+J) Icle;,, +Hel, (1)
j=0 j=0

where €; encodes the quasiperiodic potential specific to the
model (for specificity we consider V,J > 0 and unless stated
otherwise take J = 1). In particular, we consider two families
of models, in which the quasiperiodic potential is generated
via a periodic function with a period incommensurate with
the underlying lattice. The first, referred to as the § models
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[B € (—1, 1)], is described by [10]
€; = cosmij+ Pl — feosQukj+ )], ()

with an irrational x (chosen as the golden mean) reflecting
the quasiperiodicity and ¢ € [0, 2] a global phase shift used
to accumulate statistics. The 8 models are self-dual and host
a single ME given by wme = (2 —V)/8 [10]. Note that the
standard AAH model is recovered as the 8 = 0 limit, where
the ME becomes a vertical line parallel to the w axis at V = 2,
indicating that all states undergo a localization transition at
V=2

The second family is the so-called mosaic models [11]
parametrized by an integer /. These non-self-dual models have
an AAH potential on every /th site, while all remaining sites
have €; = 0. Formally,

_JcosQuakj+¢) :j=Ik
€ =10 : otherwise

3)

where k € Z. While MEs are known analytically for arbitrary
1, for brevity we here consider explicitly the / = 2 model,
where the spectrum hosts two MEs given by wyg = £2/V
[11].

Our theory centers on analysis of the local self-energy,
Sj(w), defined via the local Green function on site j as

G (w)=[wr =Ve; = Sj(@)] ", )

where o™ = w +in with n =0F, and §; =X; —iA;. We
focus on the imaginary part A; = —ImS;, since it serves as
a probabilistic order parameter for a localization transition:
Aj; is (non)vanishing with unit probability in an (extended)
localized phase [19]. For a one-dimensional nearest-neighbor
model S;(w) can be expressed as

S () =[GV (0) + G, ()], )
with GEQI the local propagator for site j £ 1 with site j
removed. As the local self-energy is a sum of two end-site
propagators of a semi-infinite chain, localization or its absence
can be inferred from the properties of end-site propagators
alone [19]; we thus focus in the following on the self-energy
of an end site, denoted Sy(w). Since Sy = JZG(IO), and the
imaginary part of the Green function is proportional to the
local density of states (LDoS), the typical value of Aj (de-
noted henceforth as Ayp) is proportional to the typical LDoS;
indeed the latter was proposed as an order parameter for
localization in both quasiperiodic [10] and also disordered
systems [24-26]. This order parameter is finite in an extended
phase and vanishes on approaching the transition from the
extended side. In a localized phase by contrast, Ay & n van-
ishes. This leads to a corresponding (and considerably less
studied) order parameter yg,rlj = (Ayp/ n)~!, which is finite in
the localized phase and vanishes on approaching the transition
from the localized side. A mobility edge is thus signalled by
a simultaneous vanishing of A, from the extended side and
divergence of yy, from the localized side.

In our theory we analyze both A, and yyy,. First, however,
we show numerical results obtained from exact diagonal-
ization for the two models Egs. (2) and (3). The local
propagator of the end site can be computed as Gy(w) =

B—model | = 2 mosaic model
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FIG. 1. Spectrum of the g-model (for § = 0.2) and the [ =
2 mosaic model, color-coded with Ay,(w) (panels (a), (b)) and
In y&é(a)) (panels (c), (d)). Black lines denote the known mobility
edges [10,11]. In panels (a), (b) a finite Ay, indicates the presence
of extended states and a vanishingly small value indicates localised
states. Concomitantly, in panels (c), (d), a finite y(yrl, signals localised
states whereas a vanishingly small yt’yrl) (divergent y,y, in the ther-
modynamic limit) signals extended states. These plots show A, to
be a valid ‘order-parameter’ for the localisation-transition/mobility-
edge coming from the extended side, while y&[‘, is its counterpart on
approaching the transition from the localised side. Results obtained
from exact diagonalisation with L = 2500 sites and n o 1/L, with
averaging over 5000 ¢-values.

(0|(w™ — H)~'|0) with the matrix inversion performed nu-
merically (where |0) denotes a state localized on the end site),
from which A, can be computed using Eq. (4). Ay, is then
obtained as the geometric mean of the distribution of Ay by
accumulating statistics over ¢. Since 1 should be on the order
of the mean level spacing we take n = c¢/L (with ¢ ~ O(1)
[27]), and yyy, is simply obtained as A, /n. The results are
shown in Fig. 1, where the spectrum of both models is plotted
in the (V, w) plane with the data color coded according to
Ayyp in panels (a),(b) and In y; | in (¢),(d). The behavior of the
numerically obtained Ay, and y{y;—in particular their drop to
vanishing values on approaching the MEs from the extended
and localized sides, respectively—clearly shows their utility
as order parameters. Having established that, we now turn to
their theoretical analysis.

We begin by using Egs. (4) and (5) to express So(w) =
J ZG(IO) as a continued fraction (CF),

J2

Sl (w) = , (6

J2

a)+—V€1 — J2

= S )

where the superscript [#] denotes that the CF has been contin-
ued (exactly) to order n [28]. From this, Ag(w) and yo(w) can
likewise be expressed as CFs.

At this stage, there are two conceptually distinct directions
one can take. The first is to set the terminal self-energy in
Eq. (6) to a typical value, SI% — —iAy,, and obtain a distri-
bution of A([)”] over an ensemble of ¢ values. This distribution

ot —V€2 —
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depends parametrically on Ay,. Self-consistency is then im-
posed by requiring that A, obtained from it is equal to the
parametric Ayp. This comprises a self-consistent mean-field
theory at nth order, in the spirit of the self-consistent theory of
Anderson localization [19]. The second, along the lines of An-
derson’s original work [1], is to analyze the convergence of the
CF for yy. This converges with unit probability in the localized
phase, such that yy is finite; while in the extended phase it fails
to converge, indicating a divergent y, in the thermodynamic
limit. The convergence or lack thereof of the CF for yy is of
course intimately connected to whether a finite or divergent
self-consistent solution arises for yy,, which connects the two
concepts [29].

In this work we take the first of these two directions and
analyze the theory explicitly at leading order, n = 1 (dropping
the superscript [#] from now). From Eq. (6),

JZ(TI + Atyp)
(w—=Ver)* + (n+ Atyp)2 )

Ap(w) = 7
In a localized regime, where Ay, 7, the relevant quantity
yo = Ag/n can be expressed as

J2(1 +ytyp)
(a) — V€1)2 ’

With ({---)) denoting an average over ¢ and end sites [30],
Yuyp 18 self-consistently determined from In y,y, = {({Inyo)) and
hence from Eq. (8) by

In (1 +y5) = ({In(@—Ve)?)) —InJ>. 9)

In the extended regime, since Ay is finite, the limit n — 0
can be taken in Eq. (7), leading to Ag = J?Aypl(w — Ve )> +
Agp17", which from In Ay, = ((In Ag)) yields the desired
equation for the self-consistent Ay,

yo(w) = ®)

«mﬂw—vﬂf+A&

) —ms*=0. (10)
Before proceeding, we lay out clearly how the MEs (along
with the regions of localized and extended states) are diag-
nosed using yiyp and Aqyp.

At any point in the (V,w) plane, a finite value of
Ayp(V, @) implies that states there are extended. If by con-
trast yyp(V, @) = Agp/n is finite then states are localized,
provided they exist for that (V, w) point; which requires w to
lie within the localized band edges { of the average DoS,
itself given to leading order by ((§(w — V€;))) [31]. A point
in the (V, w) plane can thus be unambiguously identified as
lying on a ME if (i) it lies in the interval w € [0", ®!] and (ii)
Ayyp and y,y, simultaneously vanish and diverge (respectively)
at that point. Additionally, the theory also predicts where
localized and extended states may reside in the (V, w) plane.
Define V_(V,) as the V where the MEs enter (leave) the
spectrum on increasing V' from 0, such that V= correspond to
the points where wyg = oY [31]. Then for V < V_ all states
are extended, with spectral edges determined by the vanishing
of Ayp(w). For V > V. by contrast, all states are localized
and the localized band edges form the spectral edges.

With this in hand, we turn to the results of our theory.
Equations (9) and (10) are valid, respectively, on the localized
and extended sides of a ME. Approaching the ME from the

two sides amounts to yt;,llj and A, vanishing in Egs. (9)

| = 2 mosaic model

FIG. 2. Results for A, and yy, for (a) the 8 model (with 8 =
0.2) and (b) the I = 2 mosaic model, obtained from the leading-order
theory. A finite Ay, implies the presence of extended states, while
its vanishing indicates that states if present are localized. Within the
edges of the spectrum [shown as gray curves in the (V, w) plane],
the presence of localised states is indicated by a finite y,. A simul-
taneous vanishing of Ay,(w) and divergence of y,(w) signals the
presence of mobility edges, which are denoted by the red curves in
the (V, o) plane. Note that the scales for A, and yyy, in the plots are
naturally very different.

and (10). Reassuringly, both these conditions yield identical
expressions for the self-consistent ME,

({(In[(wme — Ver)])) —InJ> = 0. (11)

Significantly, this is completely independent of the specific
model. Such a model-independent theory of MEs is a central
result of this work. Moreover, this also shows that it is suffi-
cient to analyze yyp = yiyp(V, @) to obtain the MEs.

Turning to specific results, we first discuss the g model.
Equation (9) with €; given by Eq. (2) yields

Yop = L@B +V)> =2%1/32, (12)

where A =1+ /1 — B2. Setting yl;ll) = 0 in Eq. (12) yields
correctly a single [10] ME trajectory, given by

o =B +V1- g -vI"E gla—v). (3

Equation (13) is in qualitative agreement with the exactly
known MEs [10] and asymptotically exact for 8 < 1; recover-
ing as B — 0 the AAH model result [2] that all states undergo
a one-shot transition at the critical V = 2. Additionally, from
the average DoS we obtain the localized band edges as @} =
+V/(1 F B), and hence via Eq. (13) that VL = (1 £ )X,
Combining these results shows that localized states reside
in wove < < of for Ve (V_,Vy) and 0 <o < o for
V > V, (where all states are localized). Analyzing Eq. (10)
also shows that extended states exist in @ < @ < wyg for
Ve(_,Vy) and 0 < w < of for V € (0, V_) (where all

states are extended), with o’ the spectral edges obtained from

the vanishing of Ayp(w) via Eq. (10), given by +8%0f =
AF VB — /(1 — B2)A% F 2V BA (and evolving smoothly into
o atV = V,.). Thus the collective information of wyg, @4,
and V. maps out the entire localization phase diagram of
the model in the (V, w) plane. The above results, as well
the resultant phase diagram of the model, are summarized in
Fig. 2(a).
Turning to the / = 2 mosaic models Egs. (3) and (9) give

Yop = (VI —2)/2, (14)

L060201-3



DUTHIE, ROY, AND LOGAN

PHYSICAL REVIEW B 103, L060201 (2021)

100,

3 1072,

ol 1074

1076,

107%1 1

102 100 102 10* 106 100 10! 100 100
y

FIG. 3. Probability distributions of y for the end site in the lo-
calized phase, for (a) the g model with $ =02, V=3, 0 =0
and (b) the / = 2 mosaic model with V = 3 and w = 2. Blue lines
show results from the leading-order theory. They are in excellent
agreement with numerical data (shown in orange) obtained from
exact diagonalization (ED) for L = 2500 sites with statistics obtained
over 5000 ¢ values. The red dashed vertical line in (b) shows the
8-function contribution, arising from even end sites [31]. The black
dashed lines in both panels show a y~*? tail, confirming that P, (y)
has a characteristic Lévy tail.

with localized band edges @y = V. From nyé = 0 the model

thus hosts two (symmetric in @) MEs given by
oypy = £2/V, (15)

which recovers precisely the exact result [11]. Note that the
MEs never exit the spectrum, some states always being ex-
tended (such that V; — o0), while the intersection of wyg, +
and ®Y gives V_ = +/2. Localized states thus arise for V > V_
in the regimes w” < w < wvg,— and wug,+ < @ < 0. For
V < V_, the spectrum has solely extended states, with the

band edges obtained from the vanishing of Ay, (w) [Eq. (10)]

as w§ = +2/+/4 — V2. The model thus hosts extended states
in the regime 0 < w < w{ for V < V_ and wyg, - < w <
omg,+ for V > V_. Similarly to the 8 model, these results,
together with the resultant phase diagram in the (V, w) plane,
are summarized in Fig. 2(b). We add here that spectral gaps,
indicative of self-similarity and seen in Fig. 1 for A,(w) and
Yiyp(@), do not arise at the leading-order level discussed here
but do emerge at higher order [29].

For each class of models, Eqgs. (12) and (14) show that yy,
diverges as yy, ~ (@ — wve) " on approaching the ME from
the localized side [with yy, ~ (V — 2)~! as V — 2% in the
w-independent AAH limit]. As this divergence is proportional
to that of the localization length & (w) [32], £ (w) thus diverges
with a critical exponent of v = 1, which likewise agrees with
the exactly known Lyapunov exponents for the mosaic [11]
and AAH [33] models.

Finally, while our natural focus has been on MEs, the
theory also enables the self-consistent distributions of yy and

Ay to be obtained. Here we simply make some brief re-
marks about the distribution P,(y) of y = yo, which within the
leading-order theory is given from Eq. (8) by

2
“Tvampl 09

The analytic results for P,(y) [31] are rather unwieldy, so
we show them graphically in Fig. 3 for representative (V, ®)
points for the two models and compare them to results
obtained from exact diagonalization, with which excellent
agreement is seen. Two notable points to take away from the
analytic expressions are, however, that (i) the distributions
have a oy =%/ power-law (Lévy) tail and (ii) the support of the
distributions have a sharp lower cutoff, which arises because
the €;’s have a bounded distribution. We add that the Lévy tail
in P,(y) seems quite universal, as it arises also in Anderson
localization in disordered systems in the presence of both
uncorrelated [19] as well as maximally correlated disorder
[32].

In summary, we have introduced a self-consistent theory
for MEs in quasiperiodic chains with nearest-neighbor hop-
pings. The theoretical framework is model independent, and
its efficacy was demonstrated using two different classes of
quasiperiodic models. The central object of interest is the
imaginary part of the local self-energy, which acts as a prob-
abilistic order parameter for a localization transition. MEs
arising from the theory, and the localization phase diagrams in
the space of Hamiltonian parameters and energy, were found
to be in very good agreement with previous numerical and
analytical results on the same families of models.

The present work suggests natural directions for further re-
search. Here, the continued fraction Eq. (6) for So(w) has been
analyzed self-consistently upon truncating it at leading order.
Generalizing the theory to arbitrarily high orders, analyzing
the continued fraction’s convergence, and connecting these
approaches both conceptually and mathematically, forms the
subject of a forthcoming work [29]. Using the w-dependent
propagators extracted here to obtain analytical insights into
some of the nonequilibrium dynamics of such systems in
the time domain [34] is another interesting avenue for the
future. Finally, developing a self-consistent theory of many-
body localization in quasiperiodic systems on the Fock space,
wherein the quasiperiodicity of the potentials will generate
strong correlations in the Fock-space disorder [35,36], re-
mains a challenge.
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