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Soft topological modes protected by symmetry in rigid mechanical metamaterials
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Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of
freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However,
solid objects are generally hyperstatic (or overconstrained). Here, we show how symmetries may be applied to
generate topological soft modes even in overconstrained, rigid systems. To do so, we consider non-Hermitian
topology based on nonsquare matrices, and design a hyperstatic material in which low-energy modes protected
by topology and symmetry appear at interfaces. Our approach presents a novel way of generating softness in
robust scale-free architectures suitable for miniaturization to the nanoscale.
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Topologically protected modes possess novel properties
and extraordinary robustness stemming from their dual na-
ture: these modes appear at the boundaries, yet are generated
by bulk properties [1–8]. First realized in electronic states
[8–12], this topological bulk-boundary correspondence has
since been extended to the mechanics, acoustics, and photon-
ics of structured matter [1–5,13–31]. All of these systems are
characterized by topological invariants, quantized numbers
associated with a physical state. The type of invariants that
a particular system can exhibit, or whether such topological
character can exist at all, depends on its symmetries and has
been classified for conventional, Hermitian Hamiltonians via
the tenfold way [32]. More recently, topological concepts have
been generalized to open quantum and classical systems in the
presence of external drive and dissipation using fundamental
ideas from non-Hermitian physics, which nevertheless focus
on square Hamiltonians [6,33–48].

For the mechanics of ball-and-spring networks, Ref. [49]
predicts a number of localized floppy (zero-energy) modes
proportional to a local flux of a bulk topological polarization.
These topologically protected modes have been realized in
mechanical metamaterials along interfaces in one, two, and
three dimensions, as well as at dislocation defects [49–54].
These realizations require a fine balance (called isostaticity)
between the numbers of degrees of freedom and constraints
(e.g., springs) to define the underlying topological polar-
ization. Isostaticity allows for this topological invariant by
enforcing a one-to-one mapping between degrees of freedom
at sites and the bonds between them. These distinct quantities
can then be related via a non-Hermitian rigidity matrix (anal-
ogous to a Hamiltonian), which is square only for isostatic
systems. However, isostatic materials are inherently unstable
[55], making them susceptible to deformations due to ther-
mal fluctuations. This makes realizing isostatic topological
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lattices in atomic, molecular, or colloidal crystals especially
challenging.

For the nonisostatic case, topologically protected soft
modes are a consequence of topological invariants distinct
from topological polarization. For example, overconstrained
(i.e., hyperstatic) systems can possess low-dimensional topo-
logical boundary modes at the corners of two-dimensional
systems [56]. For modes at interfaces (instead of corners),
Ref. [57] includes an exhaustive classification scheme evoca-
tive of the tenfold way but for nonsquare non-Hermitian
Hamiltonians, which could be applied to design nonisostatic
systems. However, the lack of a bulk-boundary correspon-
dence principle for the topological classification in Ref. [57]
leaves open the problem of realizing topologically protected
interface modes in overconstrained systems.

In this Letter, we focus on mechanically stable lattices,
which are overconstrained, as are nearly all naturally occur-
ring crystals. They are robust to thermal fluctuations and can
be realized on atomic, molecular, or colloidal scales. Generi-
cally, these crystals are not expected to have any soft modes.
Building on the classification scheme in Ref. [57], we design
materials in which a certain symmetry class can guarantee the
presence of soft modes at any interface between topologically
distinct states. We dub this the generalized inversion sym-
metry and design a one-dimensional hyperstatic lattice which
respects this symmetry. We show for the first time, using exact
solutions and numerical calculations, that topological modes
localized at interfaces between topologically distinct lattice
configurations arise in an overconstrained mechanical system.
Furthermore, we show that these topologically protected inter-
face gap modes have low energies rather than the zero-energy
modes of Ref. [49]. We show that at interfaces for which the
bulk band gaps on the two sides of the interface are sufficiently
different, these topological modes are absent. Our work con-
tributes to the understanding of non-Hermitian topology by
extending design principles for topological modes beyond
square Hamiltonians to rectangular matrices.
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Generalized Inversion Symmetry. The linear deformations
of a mechanical system may be described via a rigidity matrix
R, a linear map e = R · u determined from the system geom-
etry that maps the displacements of sites u (or more general
degrees of freedom) onto the extensions of springs e (or more
general violations of constraints) and hence may be used to
generate a potential energy. In real space, this rigidity matrix
is real but not necessarily square. For periodic systems, the
matrix can be written in Fourier space in terms of the wave
number k, resulting in a block diagonal matrix with blocks
R(k) as Laurent polynomials in powers of the phase factor
exp(ik) with real coefficients Rn: R(k) = ∑

n Rn exp(ikn).
Zero edge modes appear at complex wave numbers k, for
which the phase factor exp(ik) becomes a general complex
number z [3,58].

Generalized inversion symmetry is defined by the existence
of a basis in which R(k) is real for real wave numbers k, i.e.,
that there exist unitary matrices U,W such that U † · R(k) · W
is a real matrix for all real k. A consequence of this symmetry
is that zero modes come in pairs: For every zero mode at
complex number z, where z = eik , there is also a zero mode
at z−1, as shown in the Supplemental Material (SM) [59]. In
other words, a lattice with generalized inversion symmetry has
equal numbers of zero modes localized on the left and right
interfaces. Lattices with generalized inversion symmetry can
be classified into topologically distinct phases [57], even when
the number of constraints differs from the number of degrees
of freedom.

The canonical example of a mechanical lattice with topo-
logically protected modes, the one-dimensional chain of
rotors and springs studied in Ref. [49], does not obey gen-
eralized inversion symmetry. Its zero mode is localized on
either the right or left interface, indicating the presence of a
topological polarization.

The topological invariant that distinguishes lattices in the
classification that we use is calculated from the singular value
decomposition [(SVD), a generalization of the eigenvalue
decomposition] of the rigidity matrix. In SVD, the Fourier-
transformed rigidity matrix R(k) is written as R = U�RV†,
with U ,V unitary and �R a rectangular matrix with only
non-negative so-called singular values along the diagonal.
R(k) can be transformed into its SVD-flattened version Q(k)
by replacing every nonzero element of �R by 1. For an
isostatic lattice, in the basis in which R(k) is real, its SVD-
flattened version Q(k) is a real orthogonal matrix, which can
be classified into topologically distinct classes according to
the homotopy groups of such matrices. Even a hyperstatic
lattice in which the number of constraints per unit cell exceeds
the number of degrees of freedom per unit cell by one can be
similarly classified. We do this by adding to the SVD-flattened
rigidity matrix Q(k) a column that is orthogonal to all its
column vectors and thus transforming Q(k) to be orthogonal.

Maxwell Lattices. So far, we have only considered the
classification of rigidity matrices, in line with the matrix clas-
sification scheme from Ref. [57]. Now, we proceed beyond
classification to realizing rigidity matrices for topological ma-
terials with generalized inversion symmetry. For an isostatic
lattice with generalized inversion symmetry and two sites per
unit cell, the SVD-flattened rigidity matrix Q(k) is equivalent
to a two-dimensional rotation matrix. The topological invari-

FIG. 1. Hyperstatic 1D rotor chain with generalized inversion
symmetry. (a) Right-leaning rotor chain with positive rotor angle
θ (measured from the red rotor head). (b) The winding number of
�R(k) around the origin is 0 for θ > 0. (c) Left-leaning rotor chain
with negative θ . (d) The winding number of �R(k) around the origin is
1 for θ < 0.

ant classifying such a lattice is the integer winding number of
its rotation angle around the unit circle as the wave number
k goes from 0 to 2π . At an interface where this topological
invariant changes, there appear topologically protected gap
modes, as shown in the SM [59].

Similarly, for an isostatic lattice with generalized inversion
symmetry and N = 3 sites per unit cell, the SVD-flattened
rigidity matrix Q(k) is equivalent to a three-dimensional rota-
tion matrix. To calculate its topological invariant, we represent
Q(k) by a point in a solid sphere of radius π whose an-
tipodal points are identified, where the radius vector of the
point encodes the rotation angle in its magnitude and the
rotation axis in its direction. Then the topological invariant
is 0 or 1 depending on the contractibility of the loop traced
out by Q(k), as the wave number k goes from 0 to 2π . At
an interface where this topological invariant changes, there
appears a topologically protected gap mode, as described in
the SM [59]. Maxwell lattices obeying generalized inversion
symmetry with more than three sites per unit cell are similarly
characterized by a Z2 topological invariant.

Topological Modes in a Hyperstatic Lattice. The study of
topological modes has hitherto been almost exclusively in the
realm of Maxwell lattices. As we proceed to show, the advan-
tage of generalized inversion symmetry is that it allows us to
construct hyperstatic lattices that have topologically protected
modes. We restrict our analysis to hyperstatic lattices with one
degree of freedom and two constraints per unit cell. For these
lattices, the topological invariant has a simple interpretation
as the winding number around the origin of the real two-
component vector �R(k) as k crosses the Brillouin zone, as
shown in Figs. 1(b) and 1(d). For instance, consider a hyper-
static lattice with the following Fourier transformed rigidity
matrix: R(k) = (c − cos k , sin k)T , where c > 0 is a dimen-
sionless parameter determined via the structure’s geometry. Its
winding number is 1 or 0 for c < 1 and c > 1, respectively.
When c = 1, the loop traced out by �R(k) passes through the
origin of the 2D plane, indicating that the lattice must have a
bulk zero mode as it crosses over from one topological phase
to the other.

The above rigidity matrix R(k) can be transformed to an
equivalent rigidity matrix R̃(k) which is real in real space, as
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follows:

R̃(k) = 1√
2

(
1 −i

1 i

)
· R(k) = 1√

2

(
c − ei k

c − e−i k

)
. (1)

The rigidity matrix R̃(k) is realized by the hyperstatic ro-
tor chain in Figs. 1(a) and 1(c), where c = (a + 2r sin θ )
/(a − 2r sin θ ), a is the lattice spacing, r is the distance
between the fixed point and the rotor head, and θ is the
rotor angle measured from the vertical. The hyperstatic rotor
chain with c > 1 (⇔ θ > 0) and c < 1 (⇔ θ < 0) belong to
topologically distinct phases with winding numbers 0 and 1,
respectively, as shown in Fig. 1.

The equation of motion for the angular displacement un of
a rotor at lattice site n becomes

ün = − (cn − 1)2un + cn(un+1 − 2un + un−1)

+ cn+1 − cn

2
un+1 − cn − cn−1

2
un−1, (2)

where the dimensionless parameter c is taken to be a function
of the lattice site n (c → cn). For a detailed derivation, see
the SM [59].

We now analytically and numerically study the modes
localized at an interface between topologically distinct hy-
perstatic rotor chains. These interface modes lie in the gap,
i.e., have energy lower than the minimum bulk mode energy
(cn − 1)2, but are not necessarily soft. The interface modes
are guaranteed to be soft when the lowest bulk mode energy,
(cn − 1)2, is small. These interface modes are reminiscent
of the zero mode that the hyperstatic rotor chain must pass
through as it is continuously deformed from the topological
phase on one side of the interface (c > 1) to the topological
phase on the other side of the interface (c < 1).

Sharp Interface. At a sharp interface between topologically
distinct phases of the hyperstatic rotor chain, the parameter
c jumps from below 1 to above 1 or vice versa. Using nor-
mal modes of the generalized Bloch form un(t ) = u0 zn eiωt ,
we exactly solve the equation of motion, Eq. (2) (see SM
[59] for details). Using our exact solution, we calculate the
values of c on the left (cL ) and right (cR) of the interface,
for which the exact solution admits a localized interface
mode. As shown in Fig. 2(d), we find that the existence
of a topological interface mode in the gap is guaranteed
only when the gap frequencies on both sides of the inter-
face overlap. This overlap occurs when the energies for the
lowest bulk modes on either side of the interface coincide:
(cL − 1)2 = (cR − 1)2. For the interface to obey this condi-
tion and be topologically nontrivial (i.e., cL �= cR), it must
satisfy cL + cR = 2. Taking cL = 1 + m0 , cR = 1 − m0, and
substituting in the exact solution, the energy of the localized
mode is ω2 = m2

0 − m4
0/(4 − m2

0 ), which is lower than the
lowest bulk mode energy: (c − 1)2 = m2

0. Furthermore, the
mode decay rates are zL = (2 + m0)/(2 + m0 − m0

2) , zR =
(2 − m0 − m0

2)/(2 − m0). That is, for |m0| < 1, the mode
amplitude is right-growing on the left of the interface (|zL| >

1), and right-decaying on the right side of the interface (|zR| <

1), and hence localized at the interface.
To confirm our exact analysis, we numerically calculate

the modes of a periodic hyperstatic chain of N = 4000 ro-
tors with two sharp interfaces. One of the interfaces with

FIG. 2. Topologically protected localized modes at a sharp in-
terface in a hyperstatic lattice with generalized inversion symmetry.
(a) A sharp interface between right- and left-leaning hyperstatic rotor
chains. (b) The localized mode (red), the lattice parameter c (yellow)
at the interface. (c) Density of states showing two topologically
protected localized modes, one at each interface. (d) The region
of parameter space (light blue) for localized modes to exist at an
interface between a lattice with c = cL on the left, and c = cR on the
right, with cL + cR = 2 in deep blue.

cL = 1.3 , cR = 0.7 (i.e., m0 = 0.3), is shown in Fig. 2(a).
The topological mode localized at that interface is shown in
Fig. 2(b), in red, with the mode decay rates in agreement
with the calculated values: zL = 1.04 and zR = 0.95. The
density of states shown in Fig. 2(c) shows the two topo-
logical modes localized at the two interfaces as having the
lowest energy (in red), in agreement with the calculated value:
ω2 = 0.0879. They also have the lowest participation ratio,
where the participation ratio [61] of a normalized mode un is
PR = 1/(N

∑
n |un|4), indicating their localizated nature. As

the gap frequency increases, the topological interface mode
persists even when the gap frequencies on the two sides of
the interface are not equal, i.e., when cL + cR �= 2, as shown
in Fig. 2(d).

Smooth Interface. To study the modes localized at a smooth
interface between the two topologically distinct phases of the
hyperstatic rotor chain, we take the continuum limit of Eq. (2)
with cn → c(x) = 1 + m(x) and un(t ) → u(x, t ), u(x, t ) =
u(x) eiωt to get

(ω2 − m2)u + (1 + m)u′′ + m′u′ = 0, (3)

with u′, etc. denoting spatial derivatives.
In the limit m(x) � 1, i.e., in the region where c(x) is

close to 1, the above equation of motion becomes u′′(x) +
(ω2 − m2)u = 0, bearing a close resemblance to the time-
independent Schrödinger equation with the energy E = ω2,
the potential U (x) = m2(x) = (c(x) − 1)2, and 2M/h̄2 = 1.
In this analogy, a smooth interface corresponds to a poten-
tial well with a minimum value of U (x) = 0 when m(x) =
0, c(x) = 1, and depth dictated by the asymptotic values
of U (x) = m2(x) on either side of the well. The potential
U (x) is symmetric about its minimum when mL

2 = mR
2: the

asymptotic values of m2(x) on the left and right sides of the
interface are equal. This occurs when the lowest bulk mode
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FIG. 3. Topologically protected localized modes at a smooth in-
terface in a hyperstatic lattice with generalized inversion symmetry.
(a) A smooth interface between right- and left-leaning hyperstatic
rotor chains. (b) For smoothly varying parameter c, the localized in-
terface modes can be mapped to bound states in an effective potential
(blue) for the Schrödinger equation. (c) The two lowest localized
modes (red) at the interface. (d) Density of states showing the two
topologically protected modes at the two interfaces. (e) The region
of parameter space (blue) in which localized modes exist at a smooth
interface with c = cL on the left and c = cR on the right, calculated in
the continuum approximation (see Ref. [60] and Eq. (32) in the SM
[59]) for different interface widths W . cL + cR = 2 is shown in deep
blue. The grey regions correspond to the nontopological interface,
when localized interface modes are not guaranteed to exist.

energies on the two sides of the interface are equal. For a topo-
logically nontrivial interface, this requires that cL + cR = 2,
where cL, cR are the asymptotic values of c(x) on the left and
right sides of the interface. When this condition is satisfied, at
least one bound state solution exists irrespective of the depth
of the potential well [60], ensuring a localized mode at the
interface.

The analogy with the Schrödinger equation enables an
exact solution of Eq. (3) for m(x) = m0 tanh(x/W ) [62]. For
sufficiently large width W and depth m2

0 of the potential
well, there are multiple localized modes at each interface,
their number given by 	s(m0,W )
 + 1, where s(m0,W ) =
(−1 +

√
1 + (4m2

0 W 2))/2. The energy of the localized in-

terface modes is ω2
n = m2

0 − (s(m0,W ) − n)2/W 2, for n =
0, 1, 2, . . . , 	s
, which is less than the lowest bulk mode
energy m2

0.

To confirm our exact analysis, we numerically calculate
the modes of a periodic hyperstatic chain of N = 4000 rotors
with m0 = 0.3, W = 6, and two smooth interfaces for which
m(x) = m0 tanh(x/W ), one of which is shown in Fig. 3(a).
The variation of c(x) = 1 + m(x) (yellow) and the effective
potential U (x) = m2(x) (blue) across the interface is shown
in Fig. 3(b). The two localized mode profiles at the interface
plotted in Fig. 3(c) (red) are as predicted by the exact solution
described in the SM [59]. The density of states shown in
Fig. 3(d) shows two soft modes (red) per interface having the
lowest energies, at the values predicted by the exact solution.
These modes also have the lowest participation ratios indicat-
ing their localized nature.

The case when the lowest bulk mode energies on the
two sides of the interface are unequal, i.e., cL + cR �= 2,
corresponds to an asymmetric potential well in analogy
with the Schrödinger equation. An approximate criterion
from Ref. [60] says that a localized interface mode exists

if W (m2
L + m2

R) � 2
√

2|m2
L − m2

R|, where m2
L, m2

R are the

asymptotic values of m2(x) on the left and right sides of
the interface, and W is the interface width. The region of
parameter space {cL, cR} = {1 + mL, 1 + mR} for which the
above criterion is fulfilled is plotted for different values of W
in Fig. 3(e), showing that topological interface modes persist
even when cL + cR �= 2, with wider and deeper potential wells
allowing for greater deviations from the symmetric case.

Conclusions. We have presented a theoretical study of
topological mechanical interface modes derived from an over-
constrained structure, with exact solutions and numerical
calculations. These models rely on generalized inversion sym-
metry to define topological invariants and create robust soft
modes at interfaces between topologically distinct lattices.
For isostatic topological structures, experimental proposals
[63,64] have yet to be realized on submicron scales. By con-
trast, the structures that we propose are overconstrained and
otherwise rigid, which potentially makes them more accessi-
ble to fabrication via existing techniques at scales down to
the submicron [65]. Such an architecture will be robust to
thermal fluctuations and hence amenable to miniaturization to
the micro- and nanoscale. Designing topologically protected
soft modes in overconstrained materials may lead to future
applications from cushioning using soft regions [53] to con-
trolled failure at topological interfaces [19].
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