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Key role of the moiré potential for the quasicondensation of interlayer
excitons in van der Waals heterostructures
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Interlayer excitons confined in bilayer heterostructures of transition metal dichalcogenides (TMDs) offer a
promising route to implement two-dimensional dipolar superfluids. Here we study the experimental conditions
necessary for the realisation of such a collective state. Particularly, we show that the moiré potential inherent to
TMD bilayers yields an exponential increase of the excitons’ effective mass. To allow for exciton superfluidity
at sizable temperatures it is then necessary to intercalate a high-κ dielectric between the monolayers confining
electrons and holes. Thus, the moiré lattice depth is sufficiently weak for a superfluid phase to theoretically
emerge below a critical temperature of around 10 K. Importantly, for realistic experimental parameters, interlayer
excitons quasicondense in a state with finite momentum, so that the superfluid is optically inactive and flows
spontaneously.
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I. INTRODUCTION

Since seminal theoretical predictions were formulated in
the 1960’s [1], semiconductor excitons have been at the focus
of long-lasting research aiming at Bose-Einstein condensation
and its related superfluidity. Triggered by the proposal of
Lozovik and Yudson [2], two-dimensional excitons confined
in semiconductor bilayers have emerged as the most favor-
able candidates to reach this objective. Such bilayer excitons
are characterised by the separation enforced between their
electron and hole constituents, which are each confined in a
different layer. As a result they exhibit a long lifetime, a priori
sufficient for cold gases to reach thermodynamically quantum
degeneracy [3].

Relying on unmatched material quality thanks to molec-
ular beam epitaxy, studies of bilayer excitons confined in
GaAs coupled quantum wells have traced the path for
engineering quasicondensates [4]. Indeed, GaAs bilayer ex-
citons are studied in a homogeneously broadened regime
[5] where the fingerprints of quasicondensates are found in
the photoluminescence radiated by optically bright states.
Thus, one observes algebraically decaying temporal coher-
ence [5] combined to quasi-long-range spatial coherence
[6,7]. Importantly, these signatures are consistent with a
Berezinskii-Kosterlitz-Thouless transition [8,9] expected for
this two-dimensional geometry.

In GaAs, bilayer excitons have a binding energy of a
few meV that limits the maximum exciton density to less
than 1011 cm−2[3–7]. Therefore, the critical temperature for
their quasicondensation is bound to about 1K. This limi-
tation does not harm fundamental studies but in practice
precludes device applications for quantum technologies. In
fact, these require much higher operating temperatures, which
may be accessed by interfacing atomic layers of transition
metal dichalcogenides (TMDs) [10] in so-called van der
Waals heterostructures [11–13]. Electrons and holes thus have

minimum energy states lying in a different layer, thereby
implementing bilayer (interlayer) excitons. These exhibit
binding energies up to 50 times greater than in GaAs [14].
As a result, they are possibly stable at high densities, above
1012 cm−2[10], and collective quantum phenomena poten-
tially emerge below higher critical temperatures. Let us also
note that in TMDs a spatial separation between opposite
charge carriers is ensured by the difference between the
energy gap and work functions of two monolayers for heter-
obilayers [12], e.g., MoSe2/WSe2, whereas in homobilayers
an external electrical polarization is necessary as for GaAs
bilayers [4,6,7]

Importantly, in TMDs bilayer excitons are inherently sub-
ject to a spatially modulated potential: the so-called moiré
potential that results from a nonzero twist angle between in-
terfaced monolayers, and/or a mismatch between their lattice
constants [12]. Thus, the electronic bandgap varies spatially,
with a period typically around 10-30 nm and an amplitude
governed by the exact heterostructure design. Precisely, when
two distinct monolayers are interfaced directly the moiré po-
tential has been measured to be as large as 150 meV [15].
On the other hand, when one or two hexagonal boron ni-
tride (hBN) monolayers are intercalated between two TMDs,
the moiré potential has an amplitude that is expected to be
around 5 − 10 meV [16]. In general, the moiré potential of-
fers formidable opportunities to spatially arrange electronic
carriers at the nanoscale; evidence for electron crystallisation
in the moiré lattice were reported recently [16–19], as well as
the localisation of interlayer excitons [20–23].

In this work, we highlight that the moiré potential governs
the parameter space where the quasicondensation of interlayer
excitons is accessible. By directly solving the Schroedinger
equation, we first emphasize that interlayer excitons experi-
ence an exponential increase of their effective mass due to
the moiré potential. In the regime where the latter has a large
depth, the excitons effective mass is increased by orders of
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FIG. 1. (a) Real space arrangement of atoms for two monolay-
ers, red and blue respectively, stacked with a small twist angle θ ,
neglecting the lattice mismatch. The resulting moiré lattice is drawn
in black. (b) Brillouin zones of the two monolayers, together with the
moiré Brillouin zone (black), resulting from the non-vanishing twist
angle θ . The latter controls the wave vector separation Qm between
the corners of the moiré Brillouin zone. (c) Dispersion of interlayer
excitons for a nonvanishing twist angle (green) together with the
photon dispersion (orange). Their intersection marks the optically
active region of the exciton band.

magnitude, so that the critical temperature for quantum de-
generacy is too small to be accessed by cryogenic techniques.
On the other hand, for weak moiré potential depths we de-
termine the experimental parameters, e.g., the period and the
depth of the moiré lattice potential, where exciton super-
fluidity may be accessed. For that we rely on a mean-field
treatment of the Bose-Hubbard model, and show that exciton
superfluidity is favorable when the moiré potential depth is
less than 10 meV, below a critical temperature of around 10 K.
We then discuss our findings with regard to the experimental
state of the art, as well as accessible experimental signatures
for exciton superfluids.

II. MOIRÉ POTENTIAL AND INTERLAYER
EXCITONS LUMINESCENCE

For simplicity, let us consider a heterobilayer such as
WX2/MoY2, each layer confining electrons or holes constitut-
ing interlayer excitons. Stacking two such monolayers yields
a moiré lattice with a period given by am ∼ a0/

√
θ2 + δ2,

where θ denotes the twist angle between the layers, and δ =
|a0 − a1|/a0, a0,1 being the layer lattice constants. Interest-
ingly, the lattice mismatch δ is greatly reduced when the two
chalcogen atoms X and Y are identical (δ ∼ 0.1%), whereas
it can reach a few % otherwise [24]. Figure 1(a) illustrates
the moiré lattice by depicting the real space arrangement of
atoms for two monolayers stacked with a small twist angle,
neglecting δ.

An important consequence of the moiré lattice regards the
optical activity of interlayer excitons. Indeed, these are made
of electrons and holes each confined in a different layer, and
by discarding δ for simplicity, we note that a finite twist
angle between the monolayers implies that their reciprocal
lattices experience a net relative rotation [Fig. 1(b)]. As a
result, the extrema of the valence and conduction bands of
each monolayer are not aligned in reciprocal space. Thus,
interlayer excitons have a lowest energy state lying at Qm from
the optically active region, with a quasivanishing in-plane
wavevector [Fig. 1(c)]. For a WSe2/MoSe2 hetero-bilayer

with a typical twist angle θ ∼ 1◦, we deduce that Qm ∼ 130
μm−1. Then, a quasicondensate of interlayer excitons, neces-
sarily occurring due to a macroscopic occupation of the lowest
energy state [25], does not radiate any photoluminescence.
Instead, it carries a finite momentum h̄Qm, h̄ being the re-
duced Planck constant. Let us finally note that engineering
an optically bright quasicondensate, i.e., with around zero
momentum, requires a maximum twist θ ∼ 0.2◦, considering
a WSe2/MoSe2 hetero-bilayer.

III. EXCITON EFFECTIVE MASS
IN A MOIRÉ POTENTIAL

Besides inducing a relative shift of conduction and valence
bands in reciprocal space, the moiré potential also leads to
a modulation of the excitons’ potential energy in real space.
Considering this modulation is necessary to accurately model
the optical selection rules of interlayer excitons [26,27]. In
the following we show that it is also necessary to carefully
consider the depth of the moiré potential to accurately evaluate
the excitons’ effective mass.

The Hamiltonian for interlayer excitons exploring a moiré
potential can be simply expressed as

H = −h̄2

2m

∂2

∂z2
+ sERsin2(qmz), (1)

by restricting the excitonic motion to one direction z of the
moiré lattice. The associated wave vector reads in one dimen-
sion qm = π/am. In Eq.(1), m denotes the exciton effective
mass. In the second term sER = V0 provides the depth of the
moiré lattice, with ER = h̄2q2

m/2m. Of course, the hamiltonian
(1) does not take into account the moiré potential in its full
microscopic complexity. Nevertheless, Eq.(1) allows one to
accurately extract the renormalisation of the effective mass
induced by a lattice potential, as shown for ultra-cold atoms
confined in square optical lattices [28]. Therefore we follow
this approach here in the context of interlayer excitons explor-
ing a triangular moiré potential.

Using the above Hamiltonian, we look for the solutions
of the Eigen equation Hψp=E (p)ψp, p being the exciton
quasimomentum. This turns into solving a Mathieu equation
[29] so that the solutions ψp are Mathieu functions, having
a period am by definition. The excitons’ effective mass m∗,
dressed by the moiré potential, is then deduced from the en-
ergy dispersion by setting E (p) ∼ E0 + p2/2m∗. Let us note
that this matching is accurate for both weak and deep moiré
lattices, although in the former case one needs to include
on-site interactions into the Hamiltonian in order to exactly
deduce m∗ [28].

Figure 2(a) presents the ratio m∗/m as a function of s.
As expected, for vanishing moiré potentials (s ∼ 0) we find
that m∗ ∼ m, whereas m∗/m ∼ 2500 for deep moiré lattices
(s ∼ 50). In fact, Fig. 2(a) shows that m∗ exponentially in-
creases with s. This universal scaling as a function of s allows
us to extract effective masses for heterostructures that are cur-
rently studied to explore the quasicondensation of interlayer
excitons. First, we consider a MoSe2/WSe2 heterobilayer as
probed in Ref. [30]. In this device electrons and holes have ef-
fective masses me ∼ 0.49 m0 and mh ∼ 0.35 m0, respectively,
leading to m = me + mh ∼ 0.84 m0, m0 denoting the free
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FIG. 2. (a) Ratio between the excitons’ effective mass renor-
malised by the moiré lattice and the excitons’ bare effective mass,
m∗/m, as a function of s quantifying the depth of the moiré potential
V0 in units of ER. The green and orange shaded areas mark the pa-
rameter range for bilayers with and without hBN spacer, respectively.
(b) Exciton energy bands in the moiré Brillouin zone for s = 5 (red)
and s = 50 (blue). The black dashed lines display the corresponding
values of the potential depth s. Energies are expressed in units of ER,
and the quasimomentum p in units of h̄qm.

electron mass. For a typical 1◦ twist angle between stacked
monolayers, the moiré lattice has a period am ∼ 19 nm,
leading to ER ∼ 1.2 meV. The depth V0 of the moiré lattice
has not been measured for MoSe2/WSe2 heterobilayers but,
for MoS2/WSe2 scanning, tunneling microscopy has revealed
that it is of around 150 meV [15]. Furthermore, DFT calcula-
tions have confirmed that V0 ∼ 110 meV for MoSe2/WSe2

[26]. This implies that s ∼ 100, leading to m∗/m ∼ 106.
Moreover, independent experiments [31] have reported stud-
ies of a MoSe2/WSe2 bilayer when two monolayers of hBN
separate the TMDs. For such a device the depth of the moiré
potential is highly screened by hBN, so that V0 cannot exceed
5-10 meV [16], leading to s ∼ 5 − 10 and m∗/m ∼ 1.5 − 5.

Having included the effect of the moiré lattice onto the
effective mass of interlayer excitons, we now deduce the criti-
cal temperatures where quantum degeneracy and superfluidity
theoretically occur, Td and TBKT , respectively. These are ruled
by both the exciton density n and their effective mass m∗.
They read Td = 2π h̄2

kBm∗
n
g and TBKT ∼ π

2
h̄2

kBm∗ ns [32], kB being the
Boltzmann constant, while ns ∼ αn/g denotes the superfluid
density, with n the total density and g the degeneracy of the
lowest energy excitonic band. Taking into account the spin-
orbit splitting of the conduction band, we set g=2, whereas
for 1010 � n � 1012 cm−2 α ranges between 0.6 and 0.9 [32].
Figure 3(a) displays the variations of TBKT as a function of
s and n. For a MoSe2/WSe2 heterobilayer we strikingly note
that TBKT is bound to the milli-Kelvin range, so is Td . These
magnitudes directly reflect the exponentially increased m∗. On
the other hand, when a few hBN monolayers are intercalated
between the two TMDs, Fig. 3 shows that both Td and TBKT

reach sizable values, up to Td ∼ 30 K and TBKT ∼ 7 K when
n ∼ 1012 cm−2, as shown in Fig 3(b).

Since TBKT scales linearly with n, it is tempting to an-
ticipate that high-temperature superfluids are accessible at
high densities. However, we would like to point out that
for two-dimension dipolar systems this assumption is not
straightforward. Indeed, path integral Monte Carlo calcula-
tions have shown that quasicondensation of dipolar excitons
is bound to a maximum density n, defined by D � 15 where
D = d2/4πεa3E0, d being the exciton electric dipole mo-
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FIG. 3. (a) Critical temperatures for quantum degeneracy Td and
for the Berezinskii-Kosterlitz-Thouless crossover TBKT as a function
of the exciton density n and the depth of the moiré potential s, which
gives V0 in units of ER. (b) Td and TBKT as a function of s for
an exciton density set to 1012 cm−2. Temperatures are displayed in
logarithmic scale and Kelvin.

ment. ε = εrε0 is the dielectric permittivity with εr = 3 if
we consider that the heterostructure is exposed to hBN and
vacuum, while a = 1/

√
n and E0 = h̄2/m∗a2 [32]. Thus, we

deduce that quasicondensation becomes inaccessible beyond
a maximum density of around 2.5 1012 cm−2, leading to
TBKT ∼ 12 K, since in this situation the quasicondensed frac-
tion is reduced to around 60%. Note that ns is maximised to
about 90% for D ∼ 1, obtained for n ∼ 2 1011 cm−2 yielding
TBKT ∼ 2 K. Let us then stress that experiments with bilayer
excitons in GaAs have actually confirmed the breakdown of a
quasicondensate for D � 12 [6].

IV. MOTT INSULATOR VS. SUPERFLUID
OF INTERLAYER EXCITONS

In the following, we focus on devices where hBN separates
the monolayers confining electrons and holes, so that TBKT

is maximised. However, in the moiré lattice the emergence
of exciton superfluidity is not necessarily favorable energeti-
cally below this estimated critical temperature. This actually
depends on the competition between the exciton interaction
strength in the moiré lattice sites and the strength of exciton
tunneling between neighboring sites. This competition is de-
scribed by the Bose-Hubbard model [33], predicting that at
least two antagonist states compete in the quantum regime.
These are namely the Mott insulating phase, characterised by
a fixed number of particles in each lattice site, and a superfluid
phase marked by quasi-long-range order. The Bose-Hubbard
Hamiltonian usually reads

ĤBH = −t
∑
〈i, j〉

b̂†
i b̂ j + U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i, (2)

where b̂†
i (b̂i) creates (annihilates) an exciton at a site i of the

moiré lattice, while n̂i = b̂†
i b̂i denotes the number operator on

the site i. Furthermore, t represents the amplitude for tunnel-
ing between two nearest neighboring sites, while U marks the
strength of on-site interactions between excitons. Finally, μ

provides the chemical potential. The tunneling t is controlled
by the moiré lattice, i.e., its depth and period, since it is given
by the width of the lowest energy band and thereby decreases
exponentially with s. For a sinusoidal lattice in the limit V0 �
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ER the tunneling element reads t = 4√
π

ERs3/4 exp (−2
√

s). On
the other hand, at two dimensions the on-site interaction U is
usually expressed as a function of a dimensionless number

g̃ and reads U = h̄2

4mπa2
oh

g̃, where aoh =
√

h̄
mω0

, ω0 is the trap-

ping frequency at the bottom of the moiré potential within a
parabolic approximation [34].

For interlayer excitons of TMDs the parameter g̃ quan-
tifying on-site repulsive dipolar interactions has not been
measured nor calculated to the best of our knowledge. Nev-
ertheless, we can estimate it, relying on experimental and
theoretical studies realised in GaAs bilayers. There it was
shown that g̃ ∼ 5 [5,6,35] for an exciton dipole moment d
equal to 12 nm · e, whereas the medium dielectric constant
εr is around 12.5. On the other hand, excitons have a dipolar
moment of 1 nm · e in TMDs and interact in a medium of
dielectric constant of around 3. Accordingly, in TMD bilayers
g̃ is approximately 30 times smaller than in GaAs, and is then
about 0.2. Thus, for a MoSe2/WSe2 bilayer separated by two
monolayers of hBN, for V0 = 10 meV and am = 20 nm, we
find U ∼ 0.1 meV whereas t ∼ 20 μeV.

Before proceeding, let us point out that the previous esti-
mation of g̃ is obtained by approximating the dipole-dipole
interaction between interlayer excitons by a contact potential.
This imposes that the mean spatial separation between exci-
tons is larger than r0 = m∗d2/(4πε h̄2), which characterises
the dipolar interaction range (see Supplemental Material of
Ref. [6]). For a moiré lattice with a period of 20 nm and
a depth of 5 meV, using the above values for d and ε, we
deduce that r0 ∼ 7 nm, while the full width at half maximum
of the lowest energy Wannier function (∼ 2.35 · aoh) is around
11 nm in each lattice site. Thus, g̃ ∼ 0.2 provides a reasonable
estimate for the on-site interaction strength, up to the regime
where at most two excitons are confined per site. This corre-
sponds to a maximum density of about 1012 cm−2. Beyond
this value the spatial separation between excitons becomes
of the order of r0 and the spatial dependence of the dipolar
potential can no longer be neglected. Describing this regime
lies beyond the scope of the present work, that is why in the
following we restrict our analysis to the situation where at
most two excitons occupy individual lattice sites.

The Mott-insulator/superfluid transition is possibly char-
acterised simply when one restricts the analysis of the
Bose-Hubbard Hamiltonian to a single band [33]. First, this
approach requires that V0 � ER, so that the system evolves in
the so-called atomic limit. Then, both the on-site interaction
U and the thermal energy need to be small compared to the
energy separation between the first two Bloch bands, thus
ensuring that only a single band is indeed occupied. For a
bilayer device including an hBN spacer we have s ∼ 5. Then
only one band is confined [the red band diagram in Fig. 2(b)]
and the previous conditions are satisfied at low temperatures
(�30 K). Accordingly, Eq. (2) can be treated within a mean-
field expansion, i.e., by replacing the original Hamiltonian
with an effective single-site problem with a self-consistant
condition. Thus, one locates the critical coupling for the tran-
sition between Mott-insulating and superfluid phases, namely
zt
U |c = 1/(2N + 1 + 2

√
N (N + 1)), where N denotes the oc-

cupation of lattice sites and z = 3 is the lattice connectivity
(see Ref. [33], p. 15-20). Figure 4 compares t

U to this critical

FIG. 4. Ratio between tunneling and on-site interaction strengths
t/U , compared to the critical value t/U |c for the buildup of an
exciton superfluid phase. The dark region marks the parameter space
in which the Mott-insulator phase is energetically more favourable
than the superfluid one.

value for N = 2. Strikingly, we note that except for the largest
periods and lattice depths where the Mott insulator phase is
energetically favourable, the superfluid phase is accessible for
a broad range of experimental parameters. However, we note
that our zero-temperature analysis necessarily overestimates
the parameter space where the superfluid phase is favored,
since at finite temperatures a normal phase separates Mott-
insulator and superfluid domains [36].

V. DISCUSSION

Two independent experiments have recently reported ob-
servations interpreted as manifestations for Bose-Einstein
condensation of interlayer excitons. One work was con-
ducted in a MoSe2/WSe2 bilayer without an hBN spacer
and concluded that quantum degeneracy was reached at bath
temperatures lower than about 8 K for n ∼ 1011 cm−2 [30].
Importantly, we have shown that in such structures the exci-
tons effective mass is increased between 4 · 103 and 7 · 105

for s ranging from 50 to 100. Accordingly, for n ∼ 1011 cm−2

quantum degeneracy is only expected below 900 μK and
5 μK, respectively. This marks a disagreement as large as
4 to 6 orders of magnitude, questioning the role of Bose
statistics in the experiments discussed in Ref. [30]. Another
experimental work emphasised a MoSe2/WSe2 bilayer where
two monolayers of hBN are intercalated [31]. Then, the moiré
lattice is highly screened and the excitons’ effective mass var-
ied much more weakly. These studies concluded that quantum
degeneracy is reached for a density around 3 1011 cm−2 at
3.5 K. Figure 3 shows that this observation is consistent with
our expectations (2 � Td � 5 K for n ∼ 3 1011 cm−2 and
5 � s � 10). Moreover, in Ref. [31] it is argued that quantum
degeneracy holds up to 150 K for n ∼ 8 1011 cm−2. Figure 3
shows that this conclusion is, however, out of experimental
reach, since Td is ranging from 5 to 14 K at this density.
Moreover, note that Ref. [31] reports that quantum degeneracy
is lost when the twist angle between the MoSe2 and WSe2

layer is increased. Surprisingly, this observation goes against
our expectations since s decreases for increasing twist angle,
so that Td increases and then so does the degree of quantum
degeneracy.
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The above discussion questions the role of Bose-Einstein
statistics in recent experiments discussing quasicondensation
of interlayer excitons. This may be attributed to the ineffi-
ciency of optical probes to signal quantum statistics, since
for finite twist angles lowest energy excitons are optically in-
active. However, we have emphasised that quasicondensation
occurs in a ground state with finite momentum. This implies
that the superfluid phase flows spontaneously, similarly to the
condensation at the roton frequency recently observed with
ultracold dipolar atoms [37]. In the superfluid regime we then
expect counterflow electron supercurrents in the monolayers
confining electrons and holes without any applied in-plane
voltage. This behavior provides an unambiguous signature
of exciton superfluidity, in a similar way to quantum Hall
bilayers [38] or twisted bilayer graphene [39].

VI. CONCLUSION

We have highlighted that in TMD bilayers the moiré po-
tential strongly varies the parameter space where exciton

superfluidity is accessible. This is most importantly the case
for heterobilayers that are realised without an hBN spacer,
and for which superfluidity is practically out of experimental
reach. On the other hand, when hBN is intercalated between
the monolayers confining electrons and holes, we find that ex-
citon superfluidity is favorable below a critical temperature of
slightly less than 10 K for realistic experimental parameters.
In fact, the dipolar interaction between excitons limits both
the maximum density and the fraction of the superfluid phase.
Remarkably, the latter is characterised by a spontaneous flow,
which allows one to unambiguously identify the quantum
regime.
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