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Nonequilibrium phase transition in transport through a driven quantum point contact
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We study the transport of noninteracting fermions through a periodically driven quantum point contact (QPC)
connecting two tight-binding chains. Initially, each chain is prepared in its own equilibrium state, generally with
a bias in chemical potentials and temperatures. We examine the heating rate (or, alternatively, energy increase
per cycle) in the nonequilibrium time-periodic steady state established after initial transient dynamics. We find
that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We
first establish this fact for a particular type of QPCs where the heating rate can be calculated analytically.
Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally,
we derive this effect perturbatively in leading order for cases when the QPC Hamiltonian can be considered
a small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle
also vanishes above the critical frequency, despite a persistent bias. This shows that a driven QPC can act as a
frequency-controlled quantum switch.
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Controlling the state of an electron gas by means of
external time-dependent potentials is one of the central
challenges of condensed-matter physics with immediate ap-
plications to micro- and nanoelectronics. Of particular interest
is transport through quantum point contacts (QPCs) with time-
dependent parameters. Many remarkable phenomena have
been predicted and observed in driven QPCs, ranging from
quantum pumps [1–3] to noise-free excitation of particles
from the Fermi sea [4–7]. On the practical side, the cre-
ation of new electronic devices suitable, in particular, for
quantum computation remains an alluring prospect. For in-
stance, time-dependent QPCs can be considered a means to
“braid” Majorana fermions in topological superconductors
[8,9]. Theoretical approaches to these problems include the
adiabatic modification of the Landauer-Büttiker formalism for
slow drives [10–14], Keldysh perturbation theory [15], and
various approximation schemes based on Floquet theory and
the theory of open quantum systems [16–18].

Here we revisit transport through a periodically driven
QPC in a simple setting of noninteracting fermions. Namely,
we consider a closed quantum system consisting of two one-
dimensional tight-binding chains connected by a QPC. The
latter is described by a periodic time-dependent potential Vt

with a period τ . We assume that it acts nontrivially only on
adjacent edge sites of the two chains [see Fig. 1(a)].

*o.gamayun@uva.nl

We assume that, initially, each chain is in its own
equilibrium, possibly with different particle densities and
temperatures. One generally expects that in such a setting a
nonequilibrium time-periodic steady state will be established
in the vicinity of the QPC after initial transient dynamics. We
focus on two quantities characterizing this steady regime: the
heating rate W and current through the QPC J , both averaged
over the driving period τ . We consider system sizes large
enough to avoid any finite-size distortions. The large time
limit is considered after the system size is set to infinity. The
first main result of the present Letter is that the heating rate W
experiences a nonequilibrium phase transition for an arbitrary
QPC, vanishing identically when the frequency of the drive,
ω = 2π/τ , exceeds a critical value equal to the single-particle
bandwidth of the chain.1 An analogous effect, but for global
driving, was found in a spin system [22] and in a system of
coupled Kapitza pendulums [23], where it was interpreted as
an energy localization transition. The second main result is
that for some Vt the current J also vanishes above the critical
frequency, despite a finite difference in particle densities and
temperatures between the chains. Given that at almost any
moment of time there is a nonzero tunneling matrix element

1Nonequilibrium phase transition refers to a singular behavior of
observables in the nonequilibrium steady state as a function of con-
trol parameters [19–21]. Specifically, in our case the observables are
the heating rate and the current, and the control parameter is the
driving frequency.
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FIG. 1. (a) Driven QPC connecting two tight-binding chains. On-
site potentials indicated by double lines can be present on two QPC
sites. Wiggly lines indicate the time dependence of the QPC. The
whole system is described by the Hamiltonian (1). (b) The Floquet
Hamiltonian (7) of the system with the conformal QPC (4).

connecting two chains, this latter finding seems particularly
counterintuitive. We discuss similarities and differences be-
tween our results and relevant prior work [22–28] at the end
of the Letter.

We substantiate our claims in three ways. First, we consider
a particular QPC—a conformal QPC—which allows for a
completely analytical treatment. We explicitly construct the
Floquet Hamiltonian and calculate W and J . It turns out that
in this case W vanishes above the critical frequency, while J
remains finite.

We subsequently numerically examine various QPCs. It is
observed that W generically experiences a phase transition,
while J does so only for certain QPCs.

Finally, for a small Vt we calculate W and J in the leading
order of perturbation theory, where we confirm the universal
nature of the phase transition of W and elucidate one of the
conditions for the phase transition of J .

General setup. The total Hamiltonian of the system is

Ht = HL + HR + Vt , (1)

where HL and HR describe two tight-binding chains that are
disconnected in the absence of the QPC,

HL = −1

2

L−1∑
j=1

(c†
j c j+1 + c†

j+1c j ),

HR = −1

2

2L−1∑
j=L+1

(c†
j c j+1 + c†

j+1c j ), (2)

where c†
j (c j) are creation (annihilation) fermionic operators.

The single-particle spectrum of each chain is given by Ep =
− cos p, where p ∈ [0, π ] is the quantized quasimomentum,
and the single-particle energy bandwidth is equal to 2.

The QPC is described by

Vt = −1

2

(
c†

L c†
L+1

)(UL Jt

Jt UR

)(
cL

cL+1

)
. (3)

Here Jt and U L,R
t are real periodic functions of time with a

period τ . Physically, Jt corresponds to the tunneling ampli-

FIG. 2. The single-particle spectrum of the Floquet Hamiltonian
H c

F of the conformal QPC as a function of the driving frequency.

tude between the chains, while U L
t and U R

t are local on-site
potentials [up to the prefactor −(1/2)].

The whole system is illustrated in Fig. 1(a). Initially, each
chain is separately prepared in its own equilibrium. In this
way, the initial state is characterized by the Fermi-Dirac occu-
pation probabilities ρL(E ) and ρR(E ) of single-particle levels
of the left and right chains, respectively.

Conformal QPC. We address analytically a driven confor-
mal QPC defined by

Jt = sin ωt, U L
t = −U R

t = cos ωt . (4)

We refer to the Hamiltonian (1) with such parameters as H c
t . A

time-independent analog of this Hamiltonian was introduced
in Ref. [29]. The transmission coefficient in Ref. [29] is con-
stant for all energies of the incoming particles (in contrast to
scattering on a generic defect), which resembles the properties
of the S matrix obtained by gluing together two conformal
field theories [30,31].

The major insight enabling a fully analytical treatment of
the conformal QPC is that H c

t can be represented as a time-
dependent unitary transformation of H c

0 ,

H c
t = eiωt�/2H c

0 e−iωt�/2, � = i
L∑

j=1

(c†
j c2L+1− j − H.c.).

(5)
As a consequence, the solution of the Schrödinger equation
i∂t�t = H c

t �t can be recast in the form

�t = eiωt�/2e−i(H c
0 +ω�/2)t�0. (6)

At stroboscopic times tn (which are integers of the period,
tn = nτ ) the first exponent reads eiπn� = eiπnN , where N
is the particle number operator. Therefore, the stroboscopic
evolution is governed by �tn = e−iH c

F tn�0, where the Floquet
Hamiltonian H c

F reads

H c
F = H c

0 + ω

2
� − ω

2
N. (7)

The last term does not affect the dynamics of particle-number-
conserving quantities and is dropped henceforth. This Floquet
Hamiltonian is illustrated in Fig. 1(b). Note that the term
proportional to � introduces long-range hoppings similar to
[32].
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The diagonalization of H c
F is aided by introducing auxiliary

parameters z± determined from the equation

− cosh(z±) = E ± ω/2. (8)

The single-particle eigenenergies E of H c
F can be found as

zeros of the function

g(E ) ≡ s+(L)

s+(L + 1)
− s−(L + 1)

s−(L)
, s±(x) ≡ sinh(z± x).

(9)

Here the dependence of g(E ) on E enters through the dependence of z± on E . The spectrum for a finite system is shown in Fig. 2.
The single-particle eigenvectors of H c

F read

|E〉 = 1√
g′(E )

L∑
j=1

(
s+( j)

s+(L + 1)
+ s−( j)

s−(L)

)
c†

j |0〉 + i√
g′(E )

2L∑
j=L+1

(
s+(2L + 1 − j)

s+(L + 1)
− s−(2L + 1 − j)

s−(L)

)
c†

j |0〉. (10)

The knowledge of the explicit form of H c
F , its spectrum,

and its eigenvectors allows us to perform the full analysis
of the driven dynamics, which can now be reduced to an
equivalent quench dynamics. Applying the form-factor expan-
sion and summation techniques used previously for similar
time-independent problems [33,34], we find analytical expres-
sions for the average heating rate W ≡ 	E/τ and current
J ≡ 	NR/τ , where 	E and 	NR are the increase per driving

cycle of the total energy and the number of fermions in the
right chain, respectively.2 The result reads

W =
∫

dE

2πτ
[ρL(E ) + ρR(E )]
ω(E ), (11)

J =
∫

dE

2π
[ρL(E ) − ρR(E )]Tω(E ). (12)

Here the transmission coefficient Tω(E ) and the heating func-
tion 
ω(E ) are given by

T (E ) = Re

{
(1 − E2)

[
1 −

(√
(E − ω)2 − 1 +

√
(E + ω)2 − 1

2ω

)2]

+
√

1 − E2

2ω2
[
√

1 − (E − ω)2(E2 + Eω − 1) +
√

1 − (E + ω)2(E2 − Eω − 1)]

}
, (13)


(E ) = 2π

√
1 − E2

ω2
Re{[

√
1 − (E − ω)2(E2 − Eω − 1) −

√
1 − (E + ω)2(E2 + Eω − 1)]}

+ 2π
1 − E2

ω2
{[(E + ω)2 − 1]θ (1 − ω − E ) − [(E − ω)2 − 1]θ (E − ω + 1)}. (14)

They are plotted in Fig. 3. Noticeably, there are nonanalyt-
icities present for 0 < ω < 2 that are associated with Floquet
resonances (discussed below from a perturbative point of view
in what follows). The most remarkable feature, though, is that

ω(E ) turns to zero for ω � 2, leading to

W = 0, ω � 2. (15)

We plot W and J as functions of ω in Figs. 4(a) and 4(b),
respectively. It can be seen that while W experiences a phase
transition at ω = 2 in accordance with Eq. (15), this is not the
case with J , meaning that some finite current flows through
the QPC for any driving frequency.

Finally, we note that if the chains are initially filled with
fermions at infinite temperature (but, possibly, with different

2We emphasize that W and J characterize the nonequilibrium
time-periodic steady state established in the thermodynamically large
system after the initial relaxation. To calculate these quantities we
first take the limit L → ∞ and then t → ∞. It is also possible to
calculate dynamical quantities at a finite t . This is left for a separate
publication.

particle densities), the heating rate W is zero for any driv-
ing frequency. This immediately follows from Eq. (11) since

ω(E ) is an odd function of E and ρL and ρR do not depend
on E at infinite temperature.

Numerics. Let us address numerically other types of QPCs.
We start from a tunneling QPC given by

Jt = sin ωt, U L
t = U R

t = 0. (16)

The average heating rate and current are calculated numeri-
cally and presented in Figs. 4(c) and 4(d), respectively. One
can see that the phase transition for W is there. Surprisingly,

FIG. 3. The transmission coefficient (left) and the heating func-
tion (right) for the conformal QPC for different driving frequencies.
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FIG. 4. (a) and (c) Average heating rate W and (b) and (d) av-
erage current through the QPC J vs driving frequency. Initially,
the left chain is filled by fermions in the ground state with particle
density N/L = 0.4 fermion per site, while the right chain is empty.
(a) and (b) Conformal QPC (4). The heating rate and the current
are obtained analytically from Eqs. (11) and (12), respectively. The
heating rate vanishes for ω � 2, while the current remains finite.
(c) and (d) Tunneling QPC (16). Plots are obtained numerically for a
system with L = 50 sites in each chain and N = 20 fermions. Both
the heating rate and the current vanish for ω � 2. Insets show the
real-time dynamics of the total energy E − E0 [(a) and (c)] and the
particle number in the right chain NR [(b) and (d)].

in this case we discover another manifestation of the phase
transition: The average current also vanishes for ω � 2. In
this respect the tunneling QPC is drastically different from the
conformal QPC studied above.

We have further numerically explored a range of QPCs
with different time dependencies (not necessarily harmonic)
and various combinations of on-site and tunneling drivings.
We leave a detailed description of this study for a separate
publication. Here we provide a brief and qualitative account
of the obtained results. We have found that the heating rate W
vanishes for ω � 2 for all studied QPCs. As for the average
current J , it vanishes for some but not for all QPCs. Em-
pirically, one necessary condition for J to vanish above the
critical frequency is that the tunneling rate averages to zero,

J ≡
∫ τ

0
Jt dt = 0. (17)

This intuitively plausible condition is further supported by the
perturbative analysis (see below). This condition is not suffi-
cient, however, as can be seen from the case of the conformal
QPC. We observe that whenever, in addition, U L,R

t do not
depend on time, J vanishes for ω � 2. We have observed
some other cases when the current vanishes above the criti-
cal frequency. However, an exhaustive list of criteria for this
effect to occur remains unknown.

Perturbative analysis. For simplicity we focus on a par-
ticular time dependence Vt = Veiωt + V †e−iωt + V , which
covers previously considered conformal (4) and tunneling
(16) QPCs. Assuming that Vt is small, we construct the
Floquet Hamiltonian perturbatively in leading order, H (1)

F =
HL + HR + W (1). We calculate matrix elements of W (1) in
the basis of eigenstates |ζ p〉 of the Hamiltonian HL + HR of

FIG. 5. Averaged heating rate W (left) and current J (right) for
a QPC with Jt = 0.3 sin ωt, U L

t = −U R
t = 0.3 cos ωt calculated

numerically (solid lines; the system size and initial state are the same
as in Fig. 4) and perturbatively [dashed lines; see Eqs. (19) and (20),
respectively]. Both the average heating rate and current vanish for
ω � 2 in the leading order. However, the actual current remains finite
due to the higher-order corrections, as illustrated in the inset in the
right panel.

two disconnected chains, where p is the quasimomentum and
ζ = L, R discriminates between the left and the right chains.
The result reads

W (1)
ζ p;ηq = Vζ p;ηq

Ep − Eq

Ep − Eq + ω
+ V ∗

ηq;ζ p

Ep − Eq

Ep − Eq − ω
+ V ζ p;ηq.

(18)

We remind the reader that Ep = − cos p is the energy of the
disconnected chain.

In the leading order the long-time behavior of observables
can be addressed via Fermi’s golden rule with W (1) considered
the perturbation. Within this approach, the Floquet resonances
at Ep = Eq ± ω in W (1) are responsible for the linear growth
of E and NR with time. Note that the first two terms in Eq. (18)
vanish for Ep = Eq and therefore do not cause elastic transi-
tions between states with the same energy.

We find it convenient to parametrize Jt , U L
t , and U R

t

in Eq. (3) as Jt = (Jeiωt + J∗e−iωt )/2 + J and U L,R
t =

(UL,R eiωt + U ∗
L,R e−iωt )/2 + U L,R. Then we obtain in the lead-

ing order

W
(1) =

∫
dE

2πτ

(
|J|2 + |UL|2

2|J|2 ρL + |J|2 + |UR|2
2|J|2 ρR

)

(1)

ω ,

(19)

J (1) =
∫

dE

2π
(ρL − ρR)T (1)

ω , (20)

with


(1)
ω = 4π |J|2

√
1 − E2 Re[

√
1 − (E + ω)2

−
√

1 − (E − ω)2], (21)

T (1)
ω =

√
1 − E2 {|J|2 Re[

√
1 − (E + ω)2

+
√

1 − (E − ω)2] + 4|J|2
√

1 − E2}, (22)

where the argument E is dropped in functions ρL,R(E ),

(1)

ω (E ), and T (1)
ω (E ) for brevity. In Fig. 5 we compare these

perturbative results with numerical calculations. One can see
good agreement even for a not-so-small V .

For ω � 2 one obtains 
(1)
ω = 0. As a consequence, the

heating rate (19) vanishes for any QPC in the leading order,
in agreement with our numerical findings.
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As for the current, it vanishes in the leading order above
the critical frequency whenever the condition (17) is satisfied.
Indeed, this condition entails T (1)

ω = 0 for ω � 2. It should be
emphasized, however, that the condition (17) alone is not suf-
ficient to guarantee the vanishing of the current in subsequent
orders. Indeed, in the considered example the current does not
vanish at higher orders, as is clear from Fig. 5.

One may hope that going beyond the leading order can help
to clarify under what conditions the current vanishes above the
critical frequency. One should keep in mind, however, that be-
yond the leading order Fermi’s golden rule is inapplicable and
one needs to employ more sophisticated techniques to address
the transport properties. We leave this interesting question for
further studies.

Let us also remark that if J is finite, the Floquet Hamil-
tonian above the critical frequency is given by HL + HR + V
in leading order in Vt . The same result is straightforwardly
obtained in the leading order of the Floquet-Magnus expan-
sion [35]. The transport through the time-independent QPC
described by this Hamiltonian has been studied in detail (see
[33,34,36]).

Summary and discussion. To summarize, we have estab-
lished a nonequilibrium phase transition in a system (1) of
two fermionic chains filled (equally or unequally) by non-
interacting fermions and connected by a periodically driven
QPC. Namely, when the driving frequency ω exceeds the
bandwidth, the heating rate vanishes exactly for a generic
QPC. Furthermore, for certain QPCs the current averaged over
the period also vanishes, even in the presence of a filling
bias between the chains. We have verified this picture by (i)
calculating the heating rate (11) and the averaged current (12)
explicitly for the exactly solvable conformal QPC (4), (ii)
performing extensive numerical studies of various QPCs, and
(iii) performing a perturbative analysis in the leading order
in the limit when the QPC Hamiltonian can be considered a
perturbation.

It should be emphasized that vanishing of the heating rate
in periodically driven systems in the limit of infinite frequency
is a well-known fact that can be proven in full generality [37].
Here we obtain a much stronger result—exact vanishing of the
heating rate above a finite critical frequency.

Let us put our results in the context of prior work. First,
we discuss the heating rate. It is believed that generic peri-
odically driven many-body systems (without disorder) in the
thermodynamic limit heat indefinitely [38–40]. On the other
hand, it is commonly appreciated that dynamically integrable
systems of various types can violate this rule [38,41]. For
example, in the quantum Ising model with periodically driven
transverse magnetic field the heating rate vanishes (after an
initial transient dynamics) for any driving frequency [28].
This can be shown explicitly thanks to the fact that this many-
body model can be factorized into a collection of decoupled
driven two-level systems [28]. More intriguingly, it has been
found that the heating rate in a kicked spin system [22] and
a system of coupled Kapitza pendulums [23] vanishes above
a critical frequency (this effect has been referred to as energy
localization transition). These two systems allegedly are not
dynamically integrable in any way: The vanishing of heating
has been established numerically [22,23] and supported by

a high-frequency expansion and a variational analysis [22].
Here we establish this energy localization transition in a very
different setting of a locally driven many-body system and
demonstrate its universality in this setting. We note that al-
though we deal with noninteracting fermions, our system does
not factorize into decoupled two-level systems as in Ref. [28].

Next, we discuss transport phenomena related to our find-
ings. The most relevant one is the phenomenon of coherent
destruction of tunneling [25], where the tunneling probability
through a potential barrier in a driven system vanishes at
certain frequencies. This phenomenon has been established,
in particular, for tight-binding lattices connected by a QPC
with an oscillating local potential but constant tunneling term
(Jt = const) [26,27]. A related phenomenon is the real-space
dynamical localization of a particle in a periodically tilted lat-
tice [24,42] occurring, again, for a discrete set of frequencies.
In contrast to these phenomena, the vanishing of particle flow
discovered in the present work takes place for an arbitrary
frequency above the critical one. Note that time dependence
of the tunneling term is instrumental for this phase transition
to occur.

A remark on the Floquet-Magnus expansion is in order.
The Floquet-Magnus expansion is a formal expansion of the
Floquet Hamiltonian in powers of 1/ω [43]. It is widely used
to approximate Floquet Hamiltonians of few-level systems
at high frequencies. However, its applicability to many-body
systems is limited: In general, it has zero convergence radius
for a generic many-body system in the thermodynamic limit
[35,43,44] (see also [45]). In our case, the inapplicability of
the Floquet-Magnus expansion can be anticipated from the
fact that the exact Floquet Hamiltonian (7) is linear in ω.
Further, it can be easily verified that the truncated Floquet-
Magnus series contains only short-range hopping terms, while
the exact Floquet Hamiltonian (7) contains hoppings over
the entire system. As a consequence, the truncated Floquet-
Magnus expansion cannot be a reliable approximation of the
true Floquet Hamiltonian. In particular, the nonequilibrium
phase transition is not reproduced by the Floquet-Magnus
expansion.

We also note that one may attempt to get further analytical
insight into the phenomena discussed here by means of the
Floquet-Green’s-function formalism [46–48]. This approach
remains for further work.

Finally, we briefly remark on possible ways to test our
predictions experimentally. A well-developed quantum dot
technology provides a necessary toolbox for this task [49].
Another option that recently emerged is to use a cold-atom
simulator of a quantum point contact [50–52]. The latter plat-
form benefits from the perfect isolation from the environment
and extended control over the effective Hamiltonian. Accord-
ing to our findings, a QPC can act as a frequency-controlled
quantum switch, and experimental observations of this effect
may pave the way to its technological applications.
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