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Non-Hermiticity is expected to add far more physical features to the already rich Floquet topological phases
of matter. Nevertheless, a systematic approach to characterize non-Hermitian Floquet topological matter is still
lacking. In this work we introduce a dual scheme to characterize the topology of non-Hermitian Floquet systems
in momentum space and in real space using a piecewise quenched nonreciprocal Su-Schrieffer-Heeger model
for our case studies. Under the periodic boundary condition, topological phases are characterized by a pair of
experimentally accessible winding numbers that make jumps between integers and half integers. Under the open
boundary condition, a Floquet version of the so-called open boundary winding number is found to be integers
and can predict the number of pairs of zero and π Floquet edge modes coexisting with the non-Hermitian skin
effect. Our results indicate that a dual characterization of non-Hermitian Floquet topological matter is necessary
and also feasible because the formidable task of constructing the celebrated generalized Brillouin zone for non-
Hermitian Floquet systems with multiple hopping length scales can be avoided. This work hence paves a way
for further studies of non-Hermitian physics in nonequilibrium systems.
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Introduction. Floquet topological phases, as created by
time-periodic modulations, have been an experimental reality
in both synthetic metamaterials [1–4] and actual condensed-
matter systems [5,6]. One genuinely promising feature of such
nonequilibrium topological phases is that they may accommo-
date an arbitrary number of topological edge modes [7], e.g.,
the coexistence of many chiral edge modes to enhance robust
transport [8,9] and on-demand generation of multiple disper-
sionless edge modes [10–12] for encoding and processing
quantum information [13,14]. To further explore far-reaching
possibilities offered by Floquet topological matter, it is timely
and potentially fruitful to introduce non-Hermiticity to peri-
odically driven lattice systems.

The interplay between periodic driving and non-
Hermiticity is expected to be rich [15–17] and has already
led to some encouraging findings [18–34]. Two aspects of
non-Hermitian Floquet matter are worthy of special attention.
First, the exceptional topology [35–37] in the complex
Floquet band structure can potentially create even richer
topological phases absent in Hermitian cases. Independent
of other topological aspects of Floquet bands, characterizing
and experimentally detecting Floquet exceptional topology
are of general interest. Second, the so-called non-Hermitian
skin effect (NHSE) [38–45], which corresponds to the
pileup of bulk states at the edges of a non-Hermitian
lattice, must also be well addressed for a topological
characterization aiming at predicting the emergence of
many topological edge modes, localized not because of
NHSE but topological localization [46]. Remarkably, the very
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main reason of why Floquet topological phases can be so rich,
namely, the emergent/effective hoppings across different and
extended hopping ranges [10] in the same system, presents a
severe challenge in analyzing the NHSE with the celebrated
generalized Brillouin zone (GBZ) treatment [39–49]. That is,
the GBZ would be too hard to be computationally constructed
in Floquet systems with the coexistence of many different
length scales [50].

Here we propose a dual topological characterization
scheme to investigate a representative and simple class of
non-Hermitian Floquet matter protected by chiral symmetry,
in both momentum space and real space. Under the peri-
odic boundary condition (PBC), the exceptional topology in
the Floquet bands yields a phase diagram characterized by
two species of winding numbers depicting Floquet effective
Hamiltonians in two time frames, with the winding numbers
being tunable without a bound and alternating between in-
tegers and half integers. These intriguing topological phases
correspond to gap closing and reopening at eigenphase zero
or π and can be directly probed in experiments. Under the
open-boundary condition (OBC), more complications of topo-
logical characterization arise because an unlimited number
of topological edge modes at eigenphases zero and π can
coexsit with NHSEs. We propose a Floquet version of the
so-called open-boundary winding numbers (OBWNs) [40] in
real space. Two types of OBWNs are advocated, being always
integers, and they precisely match the number of pairs of the
two different types of Floquet edge modes. The OBWNs jump
only when the spectral gap under OBC closes and reopens. As
further elaborated below, the topological characterization in
momentum and that in real space are different but also related,
thus indicating the necessity of a dual approach for a com-
plete picture of non-Hermitian Floquet topological phases.

2469-9950/2021/103(4)/L041404(6) L041404-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8944-8976
https://orcid.org/0000-0003-1280-6493
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.L041404&domain=pdf&date_stamp=2021-01-21
https://doi.org/10.1103/PhysRevB.103.L041404


ZHOU, GU, AND GONG PHYSICAL REVIEW B 103, L041404 (2021)

FIG. 1. Schematic illustration of the periodically quenched
NHSSH model. Each unit cell contains two sublattices, which are
coupled by the intracell hopping amplitude μ. The intercell hop-
ping amplitudes in the first and second halves of the driving period
are J1±λ

2 and ± λ±J2
2 . The lightning symbols denote quenches ap-

plied in the middle/end of each driving period, after which the
lattice is switched from the configuration of the upper/lower to the
lower/upper array of the figure.

It is also tempting to view the seen differences as evidence
of a needed breakdown of the old concept of bulk-edge
correspondence.

Model. To make our theoretical considerations more ex-
plicit, we start with a non-Hermitian Su-Schrieffer-Heeger
(NHSSH) model [40] under periodic quenches. In momentum
space the Hamiltonian of the model takes the form

H (k, t ) =
{

Hx(k) = hx(k)σx t ∈ [
�T, �T + T

2

)
Hy(k) = hy(k)σy t ∈ [

�T + T
2 , �T + T

) . (1)

Here the quasimomentum k ∈ [−π, π ), � ∈ Z, T is the driv-
ing period, and σx,y,z are Pauli matrices acting on the sublattice
degrees of freedom. The components of the Hamiltonian
are given by hx(k) = μ + J1 cos k + iλ sin k and hy(k) =
J2 sin k + iλ cos k. μ and J1+J2

2 are the intracell and intercell
hopping amplitudes of the SSH model. The non-Hermiticity
is introduced by asymmetric hoppings J1−J2

2 ± i λ
2 between the

two sublattices. An illustration of the model is given in Fig. 1.
We set h̄ = 1 throughout and the driving period T =

2. Following Eq. (1), the Floquet operator depicting
the time evolution is U (k) = e−ihy (k)σy e−ihx (k)σx . Referring
to the established topological characterization of one-
dimensional (1D) Floquet systems [11,51,52], we introduce
a pair of symmetric time frames in which U (k) take
the forms U1(k) = e−i hx (k)

2 σx e−ihy (k)σy e−i hx (k)
2 σx = e−iH1(k) and

U2(k) = e−i
hy (k)

2 σy e−ihx (k)σx e−i
hy (k)

2 σy = e−iH2(k). Since U (k) and
U1,2(k) are related by similarity transformations, they share
the same Floquet eigenphase spectrum E (k), which can be
obtained by solving Hα (k)|ψ±

α (k)〉 = ±E (k)|ψ±
α (k)〉 for α =

1, 2 [53]. With Taylor expansions of e−i
hx,y (k)

2 σx,y , e−ihx,y (k)σx,y ,
and combining the resulting terms, we find the effective
Hamiltonians

Hα (k) = hαx(k)σx + hαy(k)σy, α = 1, 2. (2)

Hα (k) possesses the chiral (sublattice) symmetry S = σz,
time-reversal symmetry T = σ0, and particle-hole symmetry

C = σz, i.e., SHα (k)S = −Hα (k), T H∗
α (k)T −1 = Hα (−k),

and CH∗
α (k)C−1 = −Hα (−k), where σ0 denotes the 2 × 2

identity matrix. The system under study hence belongs to
the symmetry class BDI [54–56]. The symmetry S ensures
that the eigenvalues of Hα (k) appear in positive-negative pairs
on the complex plane, yielding the topological protection of
Floquet edge modes at E = 0, π . In addition, Hα (k) also
lacks the inversion symmetry, indicating the existence of
NHSEs [55].

Momentum-space characterization. Since Hα (k) possesses
the chiral symmetry, we proceed to use the following winding
number wα [17]:

wα =
∫ π

−π

dk

2π
∂kφα (k), α = 1, 2, (3)

where the winding angle φα (k) ≡ arctan[hαy(k)/hαx(k)]. wα

counts the number of times the angle φα (k) changes over 2π

as the quasimomentum k sweeps across the first Brillouin zone
(BZ). Thus this topological invariant is based entirely from the
momentum-space effective Hamiltonian in two different time
frames. Notably, wα is highly nontrivial because hαx(k) and
hαy(k) are complex functions. Furthermore, the imaginary part
of φα (k) has no contribution to the integral over k, and wα is
hence real [19,57]. More importantly, except for some special
initial states, wα thus defined can be measured dynamically
by averaging some spin textures over a sufficiently long time
[17,19].

Back to the original time frame, we can now introduce
two species of invariants to characterize the bulk topological
properties. With the winding numbers (w1,w2), we define
topological invariants

w0 = w1 + w2

2
, wπ = w1 − w2

2
. (4)

As confirmed below, (w0,wπ ) are respectively protected by
Floquet band gaps around eigenphases zero and π . Inter-
estingly, the system parameters chosen in previous studies
[17–20] happened to guarantee that always integer values of
(w0,wπ ) can be obtained. However, we discover that in more
general situations, w0 or wπ can take half-integer values,
small or large. In particular, half integer wπ indicates the
emergence of exceptional topology due to the gap closing at
E = π , which is absent in static systems. Such half-integer
windings should not be connected with the number of pos-
sible Floquet edge modes (because there cannot be a half
pair of topological edge modes for the symmetry class under
consideration). Nevertheless, since (w0,wπ ) can be measured
from dynamical spin textures [17,19,58] and are robust to per-
turbations that preserve the chiral symmetry, they do present
together a momentum-space topological characterization.

As a typical case, we present the topological phase dia-
gram of the periodically quenched NHSSH model versus the
hopping parameters in Fig. 2. The values of w0 and wπ are
obtained from Eqs. (3) and (4), and are marked explicitly
in each region of the left and right panels. Different non-
Hermitian Floquet topological phases are distinguished by
their colors. It is seen that with the change of J1 and μ, the sys-
tem undergoes a series of topological phase transitions, which
are accompanied by quantized or half-quantized jumps of w0

or wπ . Furthermore, with the increase of J1, a monotonous
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FIG. 2. Bulk topological phase diagram of the periodically
quenched NHSSH model vs hopping parameters μ and J1. Other
system parameters are (J2, λ) = (0.5π, 0.25). Each region with a
uniform color denotes a topological phase characterized by the wind-
ing numbers (w0,wπ ). The solid lines between different regions
are boundaries between distinct non-Hermitian Floquet topological
phases. The values of w0 and wπ for each phase are denoted explic-
itly in panels (a) and (b).

increase of the values of w0 or wπ across each transition is
observed, yielding non-Hermitian Floquet states characterized
by large integers or large half integers for both species of
winding numbers. These intriguing phases are unique to non-
Hermitian Floquet systems [53].

To digest the physical meanings of the half-integer winding
numbers, we present the long-time averaged spin textures
and dynamic winding numbers [19] for a typical situations
in Fig. 3, where the panels (a) and (b) show the trajectories
of spin vector (〈σx〉, 〈σy〉) versus the quasimomentum k in
the time frame α = 1 and 2. The average 〈· · · 〉 is taken with
respect to the right eigenvector |ψ+

α (k)〉 of Hα (k). The gray
thick lines highlight the origin of the 〈σx〉-〈σy〉 plane, which
satisfy the equation (〈σx〉, 〈σy〉) = 0 at all k ∈ [−π, π ). In
Figs. 3(a) and 3(b), we see that the projection of (〈σx〉, 〈σy〉)
on the 〈σx〉-〈σy〉 plane contains an integer plus a half circle,
which indicates the presence of half-integer winding numbers.
For example, starting at (〈σx〉, 〈σy〉) = (0,−1), the vector
(〈σx〉, 〈σy〉) rotates counterclockwise around the origin over
4.5 cycles, ending at (〈σx〉, 〈σy〉) = (0, 1) when k sweeps from
−π to π , as shown in Fig. 3(b). These half-integer windings
are caught by the winding angles of dynamic spin textures
θ1,2

yx , as shown in panels (c, d) of Fig. 3 (see Ref. [19] for
the definition and calculation of the dynamic winding an-
gles), where the net increments of θ1,2

yx across the first BZ are
odd-integer multiples of π , yielding half-quantized integers
after being divided by 2π . In Ref. [19] it was proven that
(θ1

yx/2π, θ2
yx/2π ) are equal to (w1,w2) defined in Eq. (3).

Therefore, if (θ1
yx + θ2

yx )/(2π ) or (θ1
yx − θ2

yx )/(2π ) happens to
be an odd integer, we obtain a half-quantized invariant w0 or

FIG. 3. Spin textures and dynamic winding angles of the peri-
odically quenched NHSSH model in time frames α = 1 [panels (a,
c)] and α = 2 [panels (b, d)]. System parameters are (J1, J2, μ, λ) =
(2.4π, 0.5π, 0.4π, 0.25), and evolutions are averaged over 500 driv-
ing periods to generate the winding angles θ1,2

yx in panels (c, d).
In the panel (a) [(b)], the red (magenta) points denote (〈σx〉, 〈σy〉)
in the first (second) time frame. The gray solid line denotes the
origin of 〈σx〉-〈σy〉 plane. In panel (c) [(d)], the red (magenta) points
correspond to the dynamic winding angles θ1

yx (θ2
yx) in time frame 1

(2) [19]. The values of (w1, w2) are also shown in panels (c, d).

wπ according to Eq. (4). Thus, the half-integer quantization
of (w0,wπ ) can also be dynamically extracted from time-
averaged spin textures [53].

Qualitatively, the half windings of w1 and w2 may be traced
back to the branch switch of the two Floquet bands when k
varies from −π to π [43]. Together with the above-mentioned
symmetry between the upper and lower complex plane of
the Floquet spectrum, the band switch (braiding) indicates
that there is necessarily windings of the Floquet spectral flow
on the complex plane, thus signaling the existence of NHSE
[41–45,48]. To treat the possible coexistence of many Floquet
edge modes with NHSE, we next move on to real-space char-
acterization.

Real-space topological characterization. The above-
obtained large winding numbers in momentum space already
indicate the existence of multiple scales of hopping in the
Floquet effective Hamiltonians. In such situations, construc-
tion of a GBZ to treat NHSE is not practical. This motivates
us to extend the OBWN previously for static non-Hermitian
systems [40] to non-Hermitian Floquet lattices.

We first define the Q matrix [53] in a time frame α as
Qα = ∑

n(|ψ+
αn〉〈ψ̃+

αn| − |ψ−
αn〉〈ψ̃−

αn|). The right (left) Floquet
eigenvectors |ψ±

αn〉 (〈ψ̃±
αn|) satisfy the eigenvalue equations

Uα|ψ±
αn〉 = e−i(±En )|ψ±

αn〉 [〈ψ̃±
αn|Uα = 〈ψ̃±

αn|e−i(±En )], with
±En being the eigenphases. Uα is given by the real-space
representation of Uα (k). With Qα , one can construct the
Floquet OBWN as

να = 1

LB
TrB(SQα[Qα,N ]). (5)
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S = IN×N ⊗ σz is the chiral symmetry operator. N is the
position operator of unit cells. N is the total number of unit
cells. LB and TrB share the same physical meanings as in
the static version of OBWN [40,53,59–62]. That is, with the
system decomposed into a bulk region and two edge regions
around the left and right boundaries, the trace TrB is taken
over the bulk region, which contains LB lattice sites. Further,
for a lattice of L sites, the length of each edge region is
LE = (L − LB)/2. Though we make no attempt to construct
a GBZ (which cannot be done), να thus defined should, just as
expected from the static case [40], essentially yield a winding
number of the effective Hamiltonian Hα (k) in the αth time
frame along the underlying GBZ. Finally, as one essential step
in our treatment and in analogy to the definition of (w0,wπ )
in Eq. (4), we define two types of OBWNs of a 1D non-
Hermitian Floquet system as

ν0 = ν1 + ν2

2
, νπ = ν1 − ν2

2
. (6)

(ν0, νπ ) ∈ Z × Z defined above serve as two new topolog-
ical invariants arising from our real-space characterization
for Floquet systems. We present below compelling evidence
that this OBC characterization works properly because they
can predict the numbers of topologically protected modes
at eigenphases zero and π , denoted as (n0, nπ ), through the
bulk-edge correspondence relations (n0, nπ ) = 2(|ν0|, |νπ |).

Let us now compare the Floquet eigenphase spectrum
of the periodically quenched NHSSH model under the
PBC and OBC. To reveal the gap closing-reopening points
clearly, we introduce gap functions �0 = |E |/π and �π =√

(|ReE | − π )2 + (ImE )2/π . It is clear that the Floquet spec-
trum become gapless at E = 0 (E = π ) if �0 = 0 (�π = 0),
where a phase transition occurs. In Fig. 4 we show (�0,�π )
of our model versus the hopping amplitude J1 under both the
PBC and OBC in a lattice of L = 400 sites. The spectrum
under PBC (in blue solid and green dotted lines) and OBC
(in gray solid and red dotted lines) are expectedly similar
in regimes far from gap closing points but clearly different
near the gapless points. For example, at J1 = 0.4π , one sees
a phase transition with �0 = 0 under the OBC, after which a
pair of edge modes with E = 0 emerges [63]. However, the
spectrum under PBC suggests two consecutive transitions at
J1 < 0.4π and J1 > 0.4π . In between, there is a bulk topo-
logical phase with winding number w0 = 1/2 according to
Eqs. (3) and (4). Figure 4 presents many other similar regimes
where the momentum-space topological invariants differ from
the OBC winding numbers by 1/2. Such a clear distinction
between the Floquet spectrum under PBC and OBC indicates
the presence of NHSEs and breakdown of the bulk-edge cor-
respondence [53].

We next compute (ν0, νπ ) following Eqs. (5) and (6). The
results are also presented in Fig. 4, where the numbers of
zero and π Floquet edge modes are denoted. We see that
the (ν0, νπ ) take integer values within each non-Hermitian
Floquet topological phase and undergo quantized jumps when
J1 is tuned through a topological phase transition point, where
we have �0 = 0 or �π = 0 under OBC. Within each topolog-
ical phase, (ν0, νπ ) correctly count the numbers of zero and
π edge modes, thus verifying the bulk-edge correspondence
of our system albeit the existence of NHSEs. Besides, with

FIG. 4. Gap functions �0 (blue and gray solid lines),
�π (red and green dotted lines), OBWNs ν0 (circles),
νπ (crosses), and PBC winding numbers w0 (diamonds),
wπ (pentagrams) of the model. System parameters are
(μ, J2, λ) = (0.4π, 0.5π, 0.25). Phase transitions under OBC
happen at J1 = (0.4π, 0.6π, 1.4π, 1.6π, 2.4π, 2.6π, 3.4π, 3.6π ),
denoted by the ticks along the horizontal axis. Only the first
20 smallest values of (�0, �π ) under OBC are shown for clear
illustrations. The numbers of zero and π Floquet edge modes are
denoted below the horizontal axis.

the increase of J1, almost monotonic increases in (ν0, νπ ) and
in the numbers of edge modes (n0, nπ ) are observed. This
verifies again the enormous potential of Floquet engineer-
ing in realizing non-Hermitian Floquet states of matter with
in principle unbounded topological invariants available and
hence as many topological edge modes as we wish.

Summary. We have introduced a powerful dual scheme
to characterize non-Hermitian Floquet topological matter, as
illustrated by a simple periodically quenched NHSSH model.
Rich non-Hermitian Floquet phases under PBC are charac-
terized by two species of topological invariants that can be
experimentally measured. The half-integer topological invari-
ants associated with both zero and π gaps are identified as
a general feature of exceptional topology in Floquet sys-
tems. Under the OBC, topological edge modes pinned at
eigenphases zero and π can be generated in large numbers,
together with NHSEs. We have found two OBWNs that can
be used to characterize the Floquet topological phases in
real space, thus avoiding the formidable task of construct-
ing a GBZ. Interestingly, we now have two nonequivalent
topological descriptions of the same Floquet system, with
each of them necessary on its own right. Their differences
also constitute a fascinating example of the breakdown of
conventional bulk-edge correspondence (but well restored by
OBWNs we proposed here). This work have thus laid a nec-
essary and timely stage for further understanding and use of
non-Hermitian Floquet phases for topologically based appli-
cations. In future work it would be interesting to extend our
framework to higher-dimensional, disordered, and many-body
non-Hermitian Floquet systems, in which the concept of GBZ
does not apply in general.
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